Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Biochem ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167271

RESUMEN

Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.

2.
Basic Res Cardiol ; 118(1): 41, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792081

RESUMEN

Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.


Asunto(s)
Enfermedades Cardiovasculares , Monoaminooxidasa , Humanos , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/fisiología , Corazón
3.
Mol Cell Biochem ; 478(9): 1939-1947, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36583793

RESUMEN

Monoamine oxidases (MAOs), mitochondrial enzymes with two isoforms, A and B, have been recently recognized as significant contributors to oxidative stress in the cardiovascular system. The present study was purported to assess the effect of metformin and empagliflozin on MAO expression, oxidative stress and vascular reactivity in internal mammary arteries harvested from overweight patients with coronary heart disease subjected to bypass grafting. Vascular rings were prepared and acutely incubated (12 h) with high glucose (GLUC, 400 mg/dL) or angiotensin II (AII, 100 nM) and metformin (10 µM) and/or empagliflozin (10 µM) and used for the assessment of MAO expression (qRT-PCR and immune histochemistry), reactive oxygen species (ROS, confocal microscopy and spectrophotometry), and vasomotor function (myograph). Ex vivo stimulation with GLUC or AII increased both MAOs expression, ROS production and impaired relaxation to acetylcholine (ACh) of the vascular rings. All effects were alleviated by incubation with each antidiabetic drug; no cumulative effect was obtained when the drugs were applied together. In conclusion, MAO-A and B are upregulated in mammary arteries after acute stimulation with GLUC and AII. Endothelial dysfunction and oxidative stress were alleviated by either metformin or empagliflozin in both stimulated and non-stimulated vascular samples harvested from overweight cardiac patients.


Asunto(s)
Arterias Mamarias , Metformina , Anillo Vascular , Humanos , Especies Reactivas de Oxígeno/metabolismo , Arterias Mamarias/metabolismo , Metformina/farmacología , Sobrepeso , Estrés Oxidativo , Monoaminooxidasa/metabolismo
4.
Bioorg Chem ; 134: 106441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36854233

RESUMEN

A novel series of N-methyl-propargylamine derivates were designed, synthesized, and evaluated as isoform-selective monoamine oxidases (MAO) inhibitors for the treatment of nervous system diseases. The in vitro studies showed some of the compounds exhibited considerable MAO-A selective inhibitory activity (IC50 of 14.86-17.16 nM), while some of the others exhibited great MAO-B selective inhibitory activity (IC50 of 4.37-17.00 nM). Further studies revealed that compounds A2 (IC50 against MAO-A: 17.16 ± 1.17 nM) and A5 (IC50 against MAO-B: 17.00 ± 1.10 nM) had significant abilities to protect PC12 cells from H2O2-induced apoptosis and reactive oxygen species (ROS) production. The parallel artificial membrane permeability assay showed A2 and A5 would be potent to cross the blood-brain barrier. The results indicated that A2 showed potential use in the therapy of MAO-A related diseases, such as depression and anxiety; while A5 exhibited promising ability in the treatment of MAO-B related diseases, such as Alzheimer's disease and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Peróxido de Hidrógeno , Ratas , Animales , Relación Estructura-Actividad , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo
5.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175433

RESUMEN

About twenty molecules sharing 1H-chromeno[3,2-c]pyridine as the scaffold and differing in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1H-indol-3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from 1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones, 1) or 2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHPCs, 2). The newly synthesized compounds were tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase (AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives 2 inhibit MAO A (IC50 about 1 µM) preferentially; (ii) the 1,2,3,4-THCP-10-one 3a, bearing the phenylethynyl fragment at C1, returned as a potent MAO B inhibitor (IC50 0.51 µM) and moderate inhibitor of both ChEs (IC50s 7-8 µM); (iii) the 1H-indol-3-yl fragment at C10 slightly increases the MAO B inhibition potency, with the analog 6c achieving MAO B IC50 of 3.51 µM. The MAO B inhibitor 3a deserves further pharmacological studies as a remedy in the symptomatic treatment of Parkinson's disease and neuroprotectant for Alzheimer's disease. Besides the established neuroprotective effects of MAO inhibitors, the role of MAOs in tumor insurgence and progression has been recently reported. Herein, antiproliferative assays with breast (MCF-7), colon (HCT116) and cisplatin-resistant ovarian (SK-OV-3) tumor cells revealed that the 10-indolyl-bearing 2,3,4,10-THCP analog 6c exerts anti-tumor activity with IC50s in the range 4.83-11.3 µM.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Humanos , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo , Piridinas/farmacología , Inhibidores de la Colinesterasa/química
6.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687158

RESUMEN

Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 µM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 µM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.


Asunto(s)
Glioblastoma , Neoplasias de la Próstata , Humanos , Masculino , Monoaminooxidasa , Poliaminas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología
7.
Inflammopharmacology ; 31(6): 3367-3370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37558921

RESUMEN

There is a group of enzymes called monoamine oxidase(s) (MAOs) that help with the oxidation of amines found in both our diet and our bodies. Currently, monoamine oxidase inhibitors (MAO-Is) are utilized to manage conditions like depression, Parkinson's disease, and other psychiatric disorders. Rheumatoid arthritis (RA) is an auto-immune disease that has been linked to negative changes in mental health, such as depression. When depression co-occurs with RA, it can further worsen the outcome of the disease. Inhibiting monoamine oxidases could potentially treat RA by improving its pathological markers. Using existing pre-clinical and clinical data on safety and toxicity makes drug re-purposing advantageous. Hence, the pre-clinical validation of MAO-I's effectiveness in managing RA requires urgent regulatory intervention to commence clinical trials. Back in 1983, a clinical case report put forward the idea of repurposing MAO-I for RA treatment. Although MAO-I had been used for depression, it was observed to have a significant reduction in joint pain and stiffness. However, no significant clinical research has been conducted on this matter since then. In this commentary article, we provide a summary of the pre-clinical data that is currently available. The main focus of our discussion is on the significance of clinical trials for MAO-I, repurposing it for RA, and using it for the simultaneous management of depression and RA.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Enfermedad de Parkinson , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoaminooxidasa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico
8.
Eur J Nucl Med Mol Imaging ; 49(4): 1275-1287, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873637

RESUMEN

The reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso , Enfermedad de Alzheimer/patología , Astrocitos/patología , Humanos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
9.
Bioorg Chem ; 118: 105493, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814086

RESUMEN

Monoamine oxidase (EC 1.4.3.4, MAO) is a flavin adenine dinucleotide-containing flavoenzyme located on the outer mitochondrial membrane and catalyzes the oxidative deamination of monoaminergic neurotransmitters and dietary amines. MAO exists in humans as two isoenzymes, hMAO-A and hMAO-B, which are distinguished by their tertiary structures, preferred substrates and inhibitors, and selective inhibition of these isoenzymes are used in the treatment of different diseases such as Alzheimer's, Parkinson's and depression. In the present study, we report the design, synthesis and characterization of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as novel and selective inhibitors of hMAO-B. Twenty one compounds (38, 39a-h, 41a-d, 42a-h) were screened for their inhibitory activity against hMAO-A and hMAO-B by using in vitro Amplex Red® reagent based fluorometric method and all compounds were found to be as selective h-MAO-B inhibitors to a different degree. The compound 42e and 42h displayed the highest inhibitory activity against hMAO-B with IC50 values of 2.51 and 2.81 µM, respectively, and more than 25-fold selectivity towards inhibition of hMAO-B. A further kinetic evaluation of the most potent derivative (42e) was also performed and a mixed mode of inhibition of hMAO-B by the compound 42e was determined (Ki = 0,26 µM). According to our findings the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole emerged as a promising scaffold for the development of novel and selective hMAO-B inhibitors.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Tiadiazoles/farmacología , Triazoles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/química , Triazoles/síntesis química , Triazoles/química
10.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233054

RESUMEN

Bladder cancer is the 10th most common cancer in the world and has a high risk of recurrence and metastasis. In order to sustain high energetic needs, cancer cells undergo complex metabolic adaptations, such as a switch toward aerobic glycolysis, that can be exploited therapeutically. Reactive oxygen species (ROS) act as key regulators of cancer metabolic reprogramming and tumorigenesis, but the sources of ROS remain unidentified. Monoamine oxidases (MAOs) are mitochondrial enzymes that generate H2O2 during the breakdown of catecholamines and serotonin. These enzymes are particularly important in neurological disorders, but recently, a new link between MAOs and cancer has been uncovered, involving their production of ROS. At present, the putative role of MAOs in bladder cancer has never been evaluated. We observed that human urothelial tumor explants and the bladder cancer cell line AY27 expressed both MAO-A and MAO-B isoforms. Selective inhibition of MAO-A or MAO-B limited mitochondrial ROS accumulation, cell cycle progression and proliferation of bladder cancer cells, while only MAO-A inhibition prevented cell motility. To test whether ROS contributed to MAO-induced tumorigenesis, we used a mutated form of MAO-A which was unable to produce H2O2. Adenoviral transduction of the WT MAO-A stimulated the proliferation and migration of AY27 cells while the Lys305Met MAO-A mutant was inactive. This was consistent with the fact that the antioxidant Trolox strongly impaired proliferation and cell cycle progression. Most interestingly, AY27 cells were highly dependent on glucose metabolism to sustain their growth, and MAO inhibitors potently reduced glycolysis and oxidative phosphorylation, due to pyruvate depletion. Accordingly, MAO inhibitors decreased the expression of proteins involved in glucose transport (GLUT1) and transformation (HK2). In conclusion, urothelial cancer cells are characterized by a metabolic shift toward glucose-dependent metabolism, which is important for cell growth and is under the regulation of MAO-dependent oxidative stress.


Asunto(s)
Carcinoma , Neoplasias de la Vejiga Urinaria , Antioxidantes/metabolismo , Carcinogénesis/metabolismo , Carcinoma/metabolismo , Catecolaminas/metabolismo , Proliferación Celular , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Estrés Oxidativo , Piruvatos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo
11.
Molecules ; 27(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36431918

RESUMEN

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Asunto(s)
Anhidrasas Carbónicas , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Monoaminooxidasa/química , Resveratrol/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo , Anhidrasas Carbónicas/metabolismo
12.
Molecules ; 27(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35566362

RESUMEN

The present study describes investigation of the effects of the bark resin extract of Garcinia nigrolineata (Clusiaceae) on the cognitive function and the induction of oxidative stress in both frontal cortex and hippocampus by unpredictable chronic mild stress (UCMS). By using behavioral mouse models, i.e., the Y-maze test, the Novel Object Recognition Test (NORT), and the Morris Water Maze Test (MWMT), it was found that the negative impact of repeated mild stress-induced learning and memory deficit through brain oxidative stress in the UCMS mice was reversed by treatment with the bark resin extract G. nigrolineata. Moreover, the prenylated xanthones viz. cowagarcinone C, cowaxanthone, α-mangostin, cowaxanthone B, cowanin, fuscaxanthone A, fuscaxanthone B, xanthochymusxanthones A, 7-O-methylgarcinone E, and cowagarcinone A, isolated from the bark resin of G. nigrolineata, were assayed for their inhibitory activities against ß-amyloid (Aß) aggregation and monoamine oxidase enzymes (MAOs).


Asunto(s)
Garcinia , Xantonas , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones , Monoaminooxidasa , Corteza de la Planta , Extractos Vegetales/farmacología , Resinas de Plantas , Xantonas/farmacología
13.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431985

RESUMEN

The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Anhidrasas Carbónicas/química , Cumarinas/farmacología , Cumarinas/química , Anhidrasa Carbónica II/metabolismo
14.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807542

RESUMEN

Monoamine oxidase inhibitors (MAOIs) are an important class of drugs prescribed for treatment of depression and other neurological disorders. Evidence has suggested that patients with atypical depression preferentially respond to natural product MAOIs. This review presents a comprehensive survey of the natural products, predominantly from plant sources, as potential new MAOI drug leads. The psychoactive properties of several traditionally used plants and herbal formulations were attributed to their MAOI constituents. MAO inhibitory constituents may also be responsible for neuroprotective effects of natural products. Different classes of MAOIs were identified from the natural product sources with non-selective as well as selective inhibition of MAO-A and -B. Selective reversible natural product MAOIs may be safer alternatives to the conventional MAOI drugs. Characterization of MAO inhibitory constituents of natural products traditionally used as psychoactive preparations or for treatment of neurological disorders may help in understanding the mechanism of action, optimization of these preparations for desired bioactive properties, and improvement of the therapeutic potential. Potential therapeutic application of natural product MAOIs for treatment of neuroblastoma is also discussed.


Asunto(s)
Productos Biológicos , Enfermedades del Sistema Nervioso , Neuroblastoma , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Neuroprotección
15.
Mol Cell Probes ; 55: 101686, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33279529

RESUMEN

Monoamine oxidases (MAO-A and MAO-B) are the two flavin adenine dinucleotide (FAD) enzymes that play an important role in neurotransmitter homeostasis and in protection against biogenic amines. The two MAO enzymes are related to various diseases such as neurological disorders, cancer or other systemic diseases. It is crucial to distinguish these two subtypes in order to explore the pathogenesis and pathophysiology of different diseases. In this review, the relationship between MAOs and related diseases is briefly introduced. Additionally, we summarize the recent advances in small molecule fluorescent probes for specific detection of MAO-A and MAO-B.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Monoaminooxidasa/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Enfermedad , Colorantes Fluorescentes/química , Humanos , Monoaminooxidasa/química , Bibliotecas de Moléculas Pequeñas/química
16.
Bioorg Chem ; 116: 105301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492558

RESUMEN

A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.


Asunto(s)
Antioxidantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/farmacología , Pargilina/análogos & derivados , Propilaminas/farmacología , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Butirilcolinesterasa/metabolismo , Células Cultivadas , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Relación Dosis-Respuesta a Droga , Electrophorus , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Caballos , Humanos , Masculino , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Pargilina/síntesis química , Pargilina/química , Pargilina/farmacología , Propilaminas/síntesis química , Propilaminas/química , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
17.
Bioorg Chem ; 111: 104895, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887586

RESUMEN

A series of 4-aminoalkyl-1(2H)-phthalazinone derivatives was designed and synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. In vitro biological assay results demonstrated that most synthesized compounds exhibited significant AChE inhibition, moderate to high MAOs inhibitory potencies and good anti-platelet aggregation abilities. Among them, compound 15b exhibited the highest inhibitory potencies towards MAO-B and MAO-A (IC50 = 0.7 µM and 6.4 µM respectively), moderate inhibition towards AChE (IC50 = 8.2 µM), and good activities against self- and Cu2+-induced Aß1-42 aggregation and platelet aggregation. Moreover, 15b also displayed antioxidant capacity, neuroprotective potency, anti-neuroinflammation and BBB permeability. These excellent results indicated that compound 15b could be worthy of further studies to be considered as a promising multifunctional candidate for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Ftalazinas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Humanos , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Ftalazinas/síntesis química , Ftalazinas/química , Agregación Plaquetaria/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Ratas , Relación Estructura-Actividad
18.
Handb Exp Pharmacol ; 264: 229-259, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32852645

RESUMEN

Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Antidepresivos , Humanos , Peróxido de Hidrógeno , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
19.
Molecules ; 25(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859055

RESUMEN

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (-7.8 kcal/mol) was greater than its affinity for AChE (-7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (-8.8 kcal/mol) was greater than its affinity for MAO-A (-7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer's disease with multi-targeting activities.


Asunto(s)
Butirilcolinesterasa/química , Inhibidores de la Colinesterasa , Cumarinas , Flavanonas , Glycyrrhiza uralensis/química , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa/química , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Cumarinas/química , Cumarinas/aislamiento & purificación , Electrophorus , Flavanonas/química , Flavanonas/aislamiento & purificación , Humanos , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/aislamiento & purificación
20.
Molecules ; 25(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971892

RESUMEN

Monoamine oxidase (MAO) isoenzymes are very important drug targets among neurological disorders. Herein, novel series of thiazolylhydrazine-piperazine derivatives were designed, synthesized and evaluated for their MAO-A and -B inhibitory activity. The structures of the synthesized compounds were assigned using different spectroscopic techniques such as 1H-NMR, 13C-NMR and HRMS. Moreover, the prediction of ADME (Absorption, Distribution, Metabolism, Elimination) parameters for all of the compounds were performed using in silico method. According to the enzyme inhibition results, the synthesized compounds showed the selectivity against MAO-A enzyme inhibition. Compounds 3c, 3d and 3e displayed significant MAO-A inhibition potencies. Among them, compound 3e was found to be the most effective derivative with an IC50 value of 0.057 ± 0.002 µM. Moreover, it was seen that this compound has a more potent inhibition profile than the reference inhibitors moclobemide (IC50 = 6.061 ± 0.262 µM) and clorgiline (IC50 = 0.062 ± 0.002 µM). In addition, the enzyme kinetics were performed for compound 3e and it was determined that this compound had a competitive and reversible inhibition type. Molecular modeling studies aided in the understanding of the interaction modes between this compound and MAO-A. It was found that compound 3e had significant and important binding property.


Asunto(s)
Diseño de Fármacos , Hidrazinas/química , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Piperazinas/síntesis química , Piperazinas/farmacología , Animales , Técnicas de Química Sintética , Simulación por Computador , Cinética , Ratones , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/toxicidad , Células 3T3 NIH , Piperazinas/metabolismo , Piperazinas/toxicidad , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA