Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
New Phytol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267260

RESUMEN

Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.

2.
Plant Cell Physiol ; 63(6): 744-754, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275214

RESUMEN

The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.


Asunto(s)
Arabidopsis , Lignina , Arabidopsis/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Transferasas/análisis , Transferasas/metabolismo
3.
Plant J ; 99(3): 506-520, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002459

RESUMEN

C-lignin is a linear polymer of caffeyl alcohol, found in the seed coats of several exotic plant species, with promising properties for generation of carbon fibers and high value chemicals. In the ornamental plant Cleome hassleriana, guaiacyl (G) lignin is deposited in the seed coat for the first 6-12 days after pollination, after which G-lignin deposition ceases and C-lignin accumulates, providing an excellent model system to study C-lignin biosynthesis. We performed RNA sequencing of seed coats harvested at 2-day intervals throughout development. Bioinformatic analysis identified a complete set of lignin biosynthesis genes for Cleome. Transcript analysis coupled with kinetic analysis of recombinant enzymes in Escherichia coli revealed that the switch to C-lignin formation was accompanied by down-regulation of transcripts encoding functional caffeoyl CoA- and caffeic acid 3-O-methyltransferases (CCoAOMT and COMT) and a form of cinnamyl alcohol dehydrogenase (ChCAD4) with preference for coniferaldehyde as substrate, and up-regulation of a form of CAD (ChCAD5) with preference for caffealdehyde. Based on these analyses, blockage of lignin monomer methylation by down-regulation of both O-methyltransferases (OMTs) and methionine synthase (for provision of C1 units) appears to be the major factor in diversion of flux to C-lignin in the Cleome seed coat, although the change in CAD specificity also contributes based on the reduction of C-lignin levels in transgenic Cleome with down-regulation of ChCAD5. Structure modeling and mutational analysis identified amino acid residues important for the preference of ChCAD5 for caffealdehyde.


Asunto(s)
Vías Biosintéticas/genética , Lignina/biosíntesis , Proteínas de Plantas/genética , Semillas/genética , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Lignina/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Conformación Proteica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Especificidad por Sustrato
4.
Plant Mol Biol ; 101(3): 235-255, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31254267

RESUMEN

KEY MESSAGE: The core set of biosynthetic genes potentially involved in developmental lignification was identified in the model C4 grass Setaria viridis. Lignin has been recognized as a major recalcitrant factor negatively affecting the processing of plant biomass into bioproducts. However, the efficient manipulation of lignin deposition in order to generate optimized crops for the biorefinery requires a fundamental knowledge of several aspects of lignin metabolism, including regulation, biosynthesis and polymerization. The current availability of an annotated genome for the model grass Setaria viridis allows the genome-wide characterization of genes involved in the metabolic pathway leading to the production of monolignols, the main building blocks of lignin. Here we performed a comprehensive study of monolignol biosynthetic genes as an initial step into the characterization of lignin metabolism in S. viridis. A total of 56 genes encoding bona fide enzymes catalyzing the consecutive ten steps of the monolignol biosynthetic pathway were identified in the S. viridis genome. A combination of comparative phylogenetic studies, high-throughput expression analysis and quantitative RT-PCR analysis was further employed to identify the family members potentially involved in developmental lignification. Accordingly, 14 genes clustered with genes from closely related species with a known function in lignification and showed an expression pattern that correlates with lignin deposition. These genes were considered the "core lignin toolbox" responsible for the constitutive, developmental lignification in S. viridis. These results provide the basis for further understanding lignin deposition in C4 grasses and will ultimately allow the validation of biotechnological strategies to produce crops with enhanced processing properties.


Asunto(s)
Lignina/metabolismo , Poaceae/metabolismo , Biomasa , Vías Biosintéticas , Coenzima A Ligasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Funciones de Verosimilitud , Metiltransferasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Plantas Modificadas Genéticamente/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo
5.
Plant Dis ; 103(9): 2277-2287, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31215851

RESUMEN

To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for proteins related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia lyase), SbCCoAOMT (caffeoyl coenzyme A [CoA] 3-O-methyltransferase), Bmr2 (4-coumarate:CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluated for responses to stalk pathogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and one of two SbCCoAOMT lines. M. phaseolina-inoculated overexpression lines had lesions not significantly different from wild-type except one SbPAL line (of two lines studied) with mean lesion lengths significantly larger. Field-grown SbMyb60 and SbCCoAOMT overexpression plants were inoculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar to wild-type, but one SbCCoAOMT had larger lesions, whereas the other line was not significantly different than wild-type. Because overexpression of SbMyb60, Bmr2, or SbC3H may not render sorghum more susceptible to stalk rots, these lines may provide sources for development of sorghum with increased phenylpropanoid concentrations.


Asunto(s)
Ascomicetos , Fusarium , Regulación de la Expresión Génica de las Plantas , Lignina , Sorghum , Ascomicetos/fisiología , Fusarium/fisiología , Genes de Plantas/genética , Lignina/biosíntesis , Lignina/genética , Sorghum/genética , Sorghum/microbiología
6.
New Phytol ; 217(1): 82-104, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28944535

RESUMEN

Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, the overexpression of SbMyb60 in sorghum (Sorghum bicolor) has been shown to induce monolignol biosynthesis, which leads to elevated lignin deposition and altered cell wall composition. To determine how SbMyb60 overexpression impacts other metabolic pathways, RNA-Seq and metabolite profiling were performed on stalks and leaves. 35S::SbMyb60 was associated with the transcriptional activation of genes involved in aromatic amino acid, S-adenosyl methionine (SAM) and folate biosynthetic pathways. The high coexpression values between SbMyb60 and genes assigned to these pathways indicate that SbMyb60 may directly induce their expression. In addition, 35S::SbMyb60 altered the expression of genes involved in nitrogen (N) assimilation and carbon (C) metabolism, which may redirect C and N towards monolignol biosynthesis. Genes linked to UDP-sugar biosynthesis and cellulose synthesis were also induced, which is consistent with the observed increase in cellulose deposition in the internodes of 35S::SbMyb60 plants. However, SbMyb60 showed low coexpression values with these genes and is not likely to be a direct regulator of cell wall polysaccharide biosynthesis. These findings indicate that SbMyb60 can activate pathways beyond monolignol biosynthesis, including those that synthesize the substrates and cofactors required for lignin biosynthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metabolismo Secundario , Sorghum/genética , Factores de Transcripción/metabolismo , Vías Biosintéticas , Pared Celular/metabolismo , Celulosa/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Metabolómica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ARN , Sorghum/metabolismo , Factores de Transcripción/genética , Activación Transcripcional
7.
New Phytol ; 204(3): 661-670, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24985707

RESUMEN

Volatile phenylpropenes play important roles in the mediation of interactions between plants and their biotic environments. Their biosynthesis involves the elimination of the oxygen functionality at the side-chain of monolignols and competes with lignin formation for monolignol utilization. We hypothesized that biochemical steps before the monolignol branch point are shared between phenylpropene and lignin biosynthesis; however, genetic evidence for this shared pathway has been missing until now. Our hypothesis was tested by RNAi suppression of the petunia (Petunia hybrida) cinnamoyl-CoA reductase 1 (PhCCR1), which catalyzes the first committed step in monolignol biosynthesis. Detailed metabolic profiling and isotopic labeling experiments were performed in petunia transgenic lines. Downregulation of PhCCR1 resulted in reduced amounts of total lignin and decreased flux towards phenylpropenes, whereas internal and emitted pools of phenylpropenes remained unaffected. Surprisingly, PhCCR1 silencing increased fluxes through the general phenylpropanoid pathway by upregulating the expression of cinnamate-4-hydroxylase (C4H), which catalyzes the second reaction in the phenylpropanoid pathway. In conclusion, our results show that PhCCR1 is involved in both the biosynthesis of phenylpropenes and lignin production. However, PhCCR1 does not perform a rate-limiting step in the biosynthesis of phenylpropenes, suggesting that scent biosynthesis is prioritized over lignin formation in petals.


Asunto(s)
Flores/metabolismo , Petunia/metabolismo , Propanoles/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen , Estructura Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propanoles/química , Transporte de Proteínas , Interferencia de ARN , Compuestos Orgánicos Volátiles/química
8.
Int J Biol Macromol ; 217: 407-416, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35841957

RESUMEN

Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignanos , Oxidorreductasas de Alcohol/química , Lignina/química , Filogenia
9.
Front Plant Sci ; 12: 727932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691108

RESUMEN

Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.

10.
Plant Biotechnol (Tokyo) ; 37(3): 273-283, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33088190

RESUMEN

Growth of biomass for lignocellulosic biofuels and biomaterials may take place on land unsuitable for foods, meaning the biomass plants are exposed to increased abiotic stresses. Thus, the understanding how this affects biomass composition and quality is important for downstream bioprocessing. Here, we analyzed the effect of drought and salt stress on cell wall biosynthesis in young shoots and xylem tissues of Populus trichocarpa using transcriptomic and biochemical methods. Following exposure to abiotic stress, stem tissues reduced vessel sizes, and young shoots increased xylem formation. Compositional analyses revealed a reduction in the total amount of cell wall polysaccharides. In contrast, the total lignin amount was unchanged, while the ratio of S/G lignin was significantly decreased in young shoots. Consistent with these observations, transcriptome analyses show that the expression of a subset of cell wall-related genes is tightly regulated by drought and salt stresses. In particular, the expression of a part of genes encoding key enzymes for S-lignin biosynthesis, caffeic acid O-methyltransferase and ferulate 5-hydroxylase, was decreased, suggesting the lower S/G ratio could be partly attributed to the down-regulation of these genes. Together, our data identifies a transcriptional abiotic stress response strategy in poplar, which results in adaptive changes to the plant cell wall.

11.
Biotechnol Biofuels ; 13: 179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117433

RESUMEN

BACKGROUND: Miscanthus × giganteus is widely recognized as a promising lignocellulosic biomass crop due to its advantages of high biomass production, low environmental impacts, and the potential to be cultivated on marginal land. However, the high costs of bioethanol production still limit the current commercialization of lignocellulosic bioethanol. The lignin in the cell wall and its by-products released in the pretreatment step is the main component inhibiting the enzymatic reactions in the saccharification and fermentation processes. Hence, genetic modification of the genes involved in lignin biosynthesis could be a feasible strategy to overcome this barrier by manipulating the lignin content and composition of M. × giganteus. For this purpose, the essential knowledge of these genes and understanding the underlying regulatory mechanisms in M. × giganteus is required. RESULTS: In this study, MgPAL1, MgPAL5, Mg4CL1, Mg4CL3, MgHCT1, MgHCT2, MgC3'H1, MgCCoAOMT1, MgCCoAOMT3, MgCCR1, MgCCR2, MgF5H, MgCOMT, and MgCAD were identified as the major monolignol biosynthetic genes in M. × giganteus based on genetic and transcriptional evidence. Among them, 12 genes were cloned and sequenced. By combining transcription factor binding site prediction and expression correlation analysis, MYB46, MYB61, MYB63, WRKY24, WRKY35, WRKY12, ERF021, ERF058, and ERF017 were inferred to regulate the expression of these genes directly. On the basis of these results, an integrated model was summarized to depict the monolignol biosynthesis pathway and the underlying regulatory mechanism in M. × giganteus. CONCLUSIONS: This study provides a list of potential gene targets for genetic improvement of lignocellulosic biomass quality of M. × giganteus, and reveals the genetic, transcriptional, and regulatory landscape of the monolignol biosynthesis pathway in M. × giganteus.

12.
Front Plant Sci ; 9: 1942, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30693007

RESUMEN

The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of Populus trichocarpa, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.

13.
Front Plant Sci ; 7: 1723, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27899932

RESUMEN

Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.). In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies toward both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1) and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1) were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

14.
Mol Plant ; 8(1): 176-87, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25578281

RESUMEN

Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/farmacología , Proteínas de Plantas/metabolismo , Populus/efectos de los fármacos , Populus/enzimología , Ácido Shikímico/farmacología , Acilcoenzima A/metabolismo , Ácidos Cumáricos/metabolismo , Hidroxilación/efectos de los fármacos , Populus/metabolismo , Propionatos
15.
Plant Biol (Stuttg) ; 17(4): 877-92, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25683375

RESUMEN

In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Lolium/genética , Familia de Multigenes , Proteínas de Plantas/genética , Oxidorreductasas de Alcohol/clasificación , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/clasificación , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Bases , Vías Biosintéticas , Coenzima A Ligasas/clasificación , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Genotipo , Lolium/metabolismo , Metiltransferasas/clasificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
16.
Phytochemistry ; 102: 55-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24667164

RESUMEN

To promote efficient production of syringin, a plant-derived bioactive monolignol glucoside, synergistic effects of enzymatic and metabolic engineering were combined. Recombinant UGT72E3/E2 chimeras, generated by exchanging parts of the C-terminal domain including the Putative Secondary Plant Glycosyltransferase (PSPG) motif of UGT72E3 and UGT72E2, were expressed in leaves of transgenic Arabidopsis plants; syringin production was measured in vivo and by enzymatic assays in vitro. In both tests, UGT72E3/2 displayed substrate specificity for sinapyl alcohol like the parental enzyme UGT72E3, and the syringin production was significantly increased compared to UGT72E3. In particular, in the in vitro assay, which was performed in the presence of a high concentration of sinapyl alcohol, the production of syringin by UGT72E3/2 was 4-fold higher than by UGT72E3. Furthermore, to enhance metabolic flow through the phenylpropanoid pathway and maintain a high basal concentration of sinapyl alcohol in the leaves, UGT72E3/2 was combined with the sinapyl alcohol synthesis pathway gene F5H encoding ferulate 5-hydroxylase and the lignin biosynthesis transcriptional activator MYB58. The resulting UGT72E3/2+F5H+MYB58 OE plants, which simultaneously overexpress these three genes, accumulated a 56-fold higher level of syringin in their leaves than wild-type plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucósidos/biosíntesis , Glucosiltransferasas/metabolismo , Ingeniería Metabólica , Transactivadores/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Sistema Enzimático del Citocromo P-450/química , Glucósidos/química , Glucosiltransferasas/química , Modelos Moleculares , Estructura Molecular , Fenilpropionatos/química , Transactivadores/química , Activación Transcripcional
17.
Mol Plant ; 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25336570

RESUMEN

In a number of plant species, downregulation of 4-coumaric acid: coenzyme A ligase (4CL) can reduce lignin content. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes Ptr4CL3 and Ptr4CL5 catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA: shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only formation of 4-coumaroyl-CoA. 4-coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Estimates of metabolic flux in wildtype and PtrC3H3 downregulated P. trichocarpa transgenics have been made using LC-MS/MS based absolute protein and metabolite quantification, mass action kinetics and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA