Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.457
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(19): 5336-5356.e30, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39137777

RESUMEN

Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vaina de Mielina , Microambiente Tumoral , Humanos , Vaina de Mielina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Transportador 1 de Casete de Unión a ATP/metabolismo , Femenino , Masculino
2.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38701782

RESUMEN

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Asunto(s)
Epigénesis Genética , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Vaina de Mielina/metabolismo , Humanos , Ratones , Remielinización/efectos de los fármacos , Oligodendroglía/metabolismo , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL , Rejuvenecimiento , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Organoides/metabolismo , Organoides/efectos de los fármacos , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/genética , Diferenciación Celular/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Masculino , Regeneración/efectos de los fármacos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
3.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768006

RESUMEN

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , Animales , Humanos , Gripe Humana/patología , Ratones , Microglía/patología , Vaina de Mielina , Neoplasias/patología , SARS-CoV-2
4.
Cell ; 180(2): 311-322.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883793

RESUMEN

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.


Asunto(s)
Potenciales de Acción/fisiología , Vaina de Mielina/fisiología , Fibras Nerviosas Mielínicas/fisiología , Nódulos de Ranvier/fisiología , Animales , Axones/metabolismo , Axones/fisiología , Masculino , Modelos Neurológicos , Fibras Nerviosas Mielínicas/metabolismo , Técnicas de Placa-Clamp/métodos , Células Piramidales/fisiología , Ratas , Ratas Wistar
5.
Cell ; 179(1): 132-146.e14, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522887

RESUMEN

Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.


Asunto(s)
Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Proteínas Portadoras/genética , Sistema Libre de Células/metabolismo , Células Cultivadas , Escherichia coli/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Centro Organizador de los Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Tubulina (Proteína)/metabolismo
6.
Cell ; 176(1-2): 43-55.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30528430

RESUMEN

Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment. VIDEO ABSTRACT.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Metotrexato/efectos adversos , Oligodendroglía/efectos de los fármacos , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Quimioterapia , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Metotrexato/farmacología , Ratones , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo
7.
Immunity ; 57(9): 2173-2190.e8, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39053462

RESUMEN

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.


Asunto(s)
Envejecimiento , Sistema Nervioso Central , Inmunidad Innata , Ratones Endogámicos C57BL , Microglía , Células Mieloides , Remielinización , Animales , Ratones , Envejecimiento/inmunología , Microglía/inmunología , Microglía/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Sistema Nervioso Central/inmunología , Vaina de Mielina/metabolismo , Vaina de Mielina/inmunología , Epigénesis Genética , Enfermedades Desmielinizantes/inmunología , Modelos Animales de Enfermedad
8.
Immunity ; 57(10): 2328-2343.e8, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39217987

RESUMEN

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.


Asunto(s)
Encéfalo , Vasos Linfáticos , Meninges , Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Ratones , Meninges/inmunología , Encéfalo/metabolismo , Encéfalo/inmunología , Humanos , Vaina de Mielina/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Supervivencia Celular , Remielinización , Femenino , Masculino , Inmunidad Adaptativa
9.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841420

RESUMEN

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Asunto(s)
Antígenos Bacterianos/metabolismo , Modelos Animales de Enfermedad , Glucolípidos/metabolismo , Lepra/microbiología , Lepra/patología , Macrófagos/inmunología , Mycobacterium leprae/fisiología , Animales , Axones/metabolismo , Axones/patología , Enfermedades Desmielinizantes , Larva/crecimiento & desarrollo , Lepra/inmunología , Mycobacterium marinum/metabolismo , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Neuroglía/metabolismo , Neuroglía/patología , Óxido Nítrico/metabolismo , Pez Cebra
10.
Annu Rev Neurosci ; 44: 197-219, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33722070

RESUMEN

Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.


Asunto(s)
Axones , Vaina de Mielina , Animales , Neuroglía , Neuronas , Oligodendroglía
11.
Annu Rev Cell Dev Biol ; 31: 647-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566119

RESUMEN

Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.


Asunto(s)
Axones/fisiología , Polaridad Celular/fisiología , Potenciales de Acción/fisiología , Animales , Humanos , Vaina de Mielina/fisiología , Neuroglía/fisiología , Neuronas/fisiología
12.
Annu Rev Cell Dev Biol ; 30: 503-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288117

RESUMEN

Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.


Asunto(s)
Vaina de Mielina/fisiología , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Axones/fisiología , Sistema Nervioso Central/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoesqueleto/ultraestructura , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Glucosa/metabolismo , Humanos , Inflamación , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Ratones , Microscopía Electrónica , Proteínas de la Mielina/fisiología , Plasticidad Neuronal , Oligodendroglía/fisiología , Sistema Nervioso Periférico/metabolismo , Células de Schwann/fisiología , Transmisión Sináptica/fisiología
13.
Proc Natl Acad Sci U S A ; 121(35): e2402813121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159379

RESUMEN

Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested. Among cognitively normal participants from two well-characterized studies spanning a wide age range, we assessed CRF operationalized as the maximum rate of oxygen consumption (VO2max) and myelin content defined by myelin water fraction (MWF) estimated through our advanced multicomponent relaxometry MRI method. We found significant positive correlations between VO2max and MWF across several white matter regions. Interestingly, the effect size of this association was higher in brain regions susceptible to early degeneration, including the frontal lobes and major white matter fiber tracts. Further, the interaction between age and VO2max exhibited i) a steeper positive slope in the older age group, suggesting that the association of VO2max with MWF is stronger at middle and older ages and ii) a steeper negative slope in the lower VO2max group, indicating that lower VO2max levels are associated with lower myelination with increasing age. Finally, the nonlinear pattern of myelin maturation and decline is VO2max-dependent with the higher VO2max group reaching the MWF peak at later ages. This study provides evidence of an interconnection between CRF and cerebral myelination and suggests therapeutic strategies for promoting brain health and attenuating white matter degeneration.


Asunto(s)
Envejecimiento , Capacidad Cardiovascular , Imagen por Resonancia Magnética , Vaina de Mielina , Consumo de Oxígeno , Sustancia Blanca , Humanos , Capacidad Cardiovascular/fisiología , Vaina de Mielina/metabolismo , Envejecimiento/fisiología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Sustancia Blanca/metabolismo , Sustancia Blanca/diagnóstico por imagen , Consumo de Oxígeno/fisiología , Adulto , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen
14.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483990

RESUMEN

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Asunto(s)
Actinas , Factor de Respuesta Sérica , Actinas/genética , Actinas/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Oligodendroglía/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Citoesqueleto/genética , Diferenciación Celular/genética
15.
Annu Rev Neurosci ; 41: 61-76, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986163

RESUMEN

Structural plasticity in the myelinated infrastructure of the nervous system has come to light. Although an innate program of myelin development proceeds independent of nervous system activity, a second mode of myelination exists in which activity-dependent, plastic changes in myelin-forming cells influence myelin structure and neurological function. These complementary and possibly temporally overlapping activity-independent and activity-dependent modes of myelination crystallize in a model of experience-modulated myelin development and plasticity with broad implications for neurological function. In this article, I consider the contributions of myelin to neural circuit function, the dynamic influences of experience on myelin microstructure, and the role that plasticity of myelin may play in cognition.


Asunto(s)
Vaina de Mielina/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Sistema Nervioso/citología , Plasticidad Neuronal/fisiología , Animales , Humanos , Neuroglía/fisiología , Neuronas/fisiología
16.
EMBO Rep ; 25(3): 1490-1512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253689

RESUMEN

How receptors juggle their interactions with multiple downstream effectors remains poorly understood. Here we show that the outcome of death receptor p75NTR signaling is determined through competition of effectors for interaction with its intracellular domain, in turn dictated by the nature of the ligand. While NGF induces release of RhoGDI through recruitment of RIP2, thus decreasing RhoA activity in favor of NFkB signaling, MAG induces PKC-mediated phosphorylation of the RhoGDI N-terminus, promoting its interaction with the juxtamembrane domain of p75NTR, disengaging RIP2, and enhancing RhoA activity in detriment of NF-kB. This results in stunted neurite outgrowth and apoptosis in cerebellar granule neurons. If presented simultaneously, MAG prevails over NGF. The NMR solution structure of the complex between the RhoGDI N-terminus and p75NTR juxtamembrane domain reveals previously unknown structures of these proteins and clarifies the mechanism of p75NTR activation. These results show how ligand-directed competition between RIP2 and RhoGDI for p75NTR engagement determine axon growth and neuron survival. Similar principles are likely at work in other receptors engaging multiple effectors and signaling pathways.


Asunto(s)
FN-kappa B , Neuronas , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Ligandos , Fosforilación , FN-kappa B/metabolismo , Neuronas/metabolismo , Receptores de Muerte Celular/metabolismo , Axones/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(33): e2303491120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549280

RESUMEN

The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.


Asunto(s)
Nacimiento Prematuro , Sustancia Blanca , Lactante , Femenino , Humanos , Recién Nacido , Sustancia Blanca/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Recien Nacido Prematuro , Vaina de Mielina , Encéfalo/diagnóstico por imagen
18.
Proc Natl Acad Sci U S A ; 120(14): e2218823120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996106

RESUMEN

Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.


Asunto(s)
Enfermedades Desmielinizantes , Sulfoglicoesfingolípidos , Humanos , Glicoesfingolípidos/metabolismo , Proteínas Portadoras/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Vaina de Mielina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Enfermedades Desmielinizantes/patología
19.
Proc Natl Acad Sci U S A ; 120(38): e2308187120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695891

RESUMEN

The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.


Asunto(s)
Retrovirus Endógenos , Esclerosis Múltiple , Humanos , Animales , Ratones , Retrovirus Endógenos/genética , Neuroglía , Animales Modificados Genéticamente , Vaina de Mielina , Esclerosis Múltiple/genética
20.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155847

RESUMEN

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Asunto(s)
Esclerosis Múltiple , Remielinización , Sustancia Blanca , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Encéfalo/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Agua , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA