Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.081
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941607

RESUMEN

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Asunto(s)
Neuroinmunomodulación , Humanos , Animales , Intestinos/inmunología , Homeostasis , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/metabolismo , Neuronas/inmunología , Neuropéptidos/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo
2.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990209

RESUMEN

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Encéfalo , Disbiosis , Humanos , Neuroinmunomodulación
3.
Annu Rev Immunol ; 40: 443-467, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471837

RESUMEN

A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.


Asunto(s)
COVID-19 , Hipersensibilidad , Animales , Citocinas/metabolismo , Homeostasis , Humanos , Linfocitos T Colaboradores-Inductores/metabolismo , Células Th2
4.
Annu Rev Immunol ; 39: 369-393, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33561366

RESUMEN

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.


Asunto(s)
Sistema Inmunológico , Neuroinmunomodulación , Animales , Humanos , Sistema Nervioso
5.
Annu Rev Immunol ; 37: 19-46, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30379595

RESUMEN

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.


Asunto(s)
Sistema Inmunológico , Sistema Nervioso , Neuroinmunomodulación , Animales , Humanos , Inmunidad Mucosa , Inmunomodulación
6.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772371

RESUMEN

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Centro Germinal , Inmunidad Humoral , Bazo , Animales , Masculino , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Ganglios Espinales/metabolismo , Centro Germinal/inmunología , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Bazo/inervación , Bazo/inmunología , Femenino
7.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942014

RESUMEN

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Asunto(s)
Envejecimiento , Encéfalo , Complemento C1q , Homeostasis , Microglía , Neuronas , Ribonucleoproteínas , Animales , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Humanos
8.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37236193

RESUMEN

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Asunto(s)
Sistema Nervioso Entérico , Enfermedades Inflamatorias del Intestino , Humanos , Glucocorticoides/farmacología , Inflamación , Sistema Nervioso Entérico/fisiología , Estrés Psicológico
9.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172564

RESUMEN

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Asunto(s)
Microglía , Organoides , Humanos , Encéfalo , Macrófagos , Fenotipo
10.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35176228

RESUMEN

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Receptores de Interleucina-17/metabolismo , Conducta Social , Animales , Hongos , Inmunidad Mucosa , Mucosa Intestinal , Ratones , Membrana Mucosa
11.
Annu Rev Cell Dev Biol ; 38: 419-446, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36201298

RESUMEN

The peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro-stem cell and neuro-immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.


Asunto(s)
Neurobiología , Neuroinmunomodulación , Animales , Homeostasis , Inflamación , Células Madre
12.
Cell ; 181(2): 293-305.e11, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32142653

RESUMEN

Pulmonary tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), manifests with a persistent cough as both a primary symptom and mechanism of transmission. The cough reflex can be triggered by nociceptive neurons innervating the lungs, and some bacteria produce neuron-targeting molecules. However, how pulmonary Mtb infection causes cough remains undefined, and whether Mtb produces a neuron-activating, cough-inducing molecule is unknown. Here, we show that an Mtb organic extract activates nociceptive neurons in vitro and identify the Mtb glycolipid sulfolipid-1 (SL-1) as the nociceptive molecule. Mtb organic extracts from mutants lacking SL-1 synthesis cannot activate neurons in vitro or induce cough in a guinea pig model. Finally, Mtb-infected guinea pigs cough in a manner dependent on SL-1 synthesis. Thus, we demonstrate a heretofore unknown molecular mechanism for cough induction by a virulent human pathogen via its production of a complex lipid.


Asunto(s)
Tos/fisiopatología , Glucolípidos/metabolismo , Nociceptores/fisiología , Factores de Virulencia/metabolismo , Adulto , Animales , Línea Celular , Tos/etiología , Tos/microbiología , Femenino , Glucolípidos/fisiología , Cobayas , Interacciones Huésped-Patógeno , Humanos , Lípidos/fisiología , Pulmón/microbiología , Macrófagos/microbiología , Masculino , Ratones , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Cultivo Primario de Células , Tuberculosis/microbiología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/fisiopatología , Factores de Virulencia/fisiología
13.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31813624

RESUMEN

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Nociceptores/fisiología , Animales , Epitelio/metabolismo , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/microbiología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Ganglios Linfáticos Agregados/inervación , Ganglios Linfáticos Agregados/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
14.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32888429

RESUMEN

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Cuerpos de Nissl/metabolismo , ARN Mensajero/metabolismo , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Relojes Circadianos/genética , Colon/citología , Colon/metabolismo , Retículo Endoplásmico Rugoso/genética , Retículo Endoplásmico Rugoso/metabolismo , Retículo Endoplásmico Rugoso/ultraestructura , Células Epiteliales/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Íleon/citología , Íleon/metabolismo , Inflamación/genética , Inflamación/metabolismo , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Cuerpos de Nissl/genética , Cuerpos de Nissl/ultraestructura , ARN Mensajero/genética , RNA-Seq , Ribosomas/metabolismo , Ribosomas/ultraestructura , Células del Estroma/metabolismo
15.
Annu Rev Cell Dev Biol ; 37: 549-573, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613819

RESUMEN

The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.


Asunto(s)
Tejido Adiposo , Obesidad , Homeostasis , Humanos , Obesidad/genética
16.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712871

RESUMEN

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Asunto(s)
Células Asesinas Naturales/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regeneración Nerviosa , Neuronas/citología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Dolor , Traumatismos de los Nervios Periféricos/inmunología , Enfermedades del Sistema Nervioso Periférico , Nervio Ciático , Células Receptoras Sensoriales/metabolismo
17.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599172

RESUMEN

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Asunto(s)
Inmunidad Innata , Células Receptoras Sensoriales , Inmunidad Innata/fisiología , Neuroinmunomodulación/fisiología , Homeostasis
18.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754819

RESUMEN

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Asunto(s)
Neuronas/metabolismo , Neutrófilos/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/administración & dosificación , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caspasa 1/deficiencia , Caspasa 1/genética , Diterpenos/farmacología , Fascitis Necrotizante/etiología , Fascitis Necrotizante/patología , Fascitis Necrotizante/veterinaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neutrófilos/inmunología , Dolor/etiología , Transducción de Señal , Piel/metabolismo , Piel/patología , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/veterinaria , Streptococcus pyogenes/metabolismo , Estreptolisinas/inmunología , Estreptolisinas/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
19.
Cell ; 175(2): 400-415.e13, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30173915

RESUMEN

Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.


Asunto(s)
Intestinos/inmunología , Macrófagos/inmunología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Motilidad Gastrointestinal/inmunología , Motilidad Gastrointestinal/fisiología , Homeostasis , Inflamación/inmunología , Mucosa Intestinal/inmunología , Intestino Delgado/metabolismo , Ratones , Monocitos/metabolismo , Neuronas/metabolismo , Fagocitos/inmunología , Transcriptoma
20.
Immunity ; 56(2): 320-335.e9, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36693372

RESUMEN

Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.


Asunto(s)
Inmunidad Innata , Neumonía , Humanos , Dopamina/metabolismo , Linfocitos , Pulmón/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Interleucina-33/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA