Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 337-351, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669320

RESUMEN

Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.


Asunto(s)
Catecolaminas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen , Melaninas , Dopamina , Biomarcadores
2.
Brain ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282945

RESUMEN

Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. While SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signaling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (NPD = 58; NHC = 27) and task-free magnetoencephalography (NPD = 58; NHC = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha (8-12 Hz) activity in patients with decreased LC neuromelanin, with a stronger association in patients with worse attentional impairments. This negative alpha-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha activity is inversely related to attention scores. Using neurochemical colocalization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha band activity. Our data also show that rhythmic beta (15-29 Hz) activity in the left somato-motor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.

3.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955650

RESUMEN

Depression in bipolar disorder (BD-II) is frequently misdiagnosed as unipolar depression (UD) leading to inappropriate treatment and downstream complications for many bipolar sufferers. In this study, we evaluated whether neuromelanin-MR signal and volume changes in the substantia nigra (SN) can be used as potential biomarkers to differentiate BD-II from UD. The signal intensities and volumes of the SN regions were measured, and contrast-to-noise ratio (CNR) to the decussation of the superior cerebellar peduncles were calculated and compared between healthy controls (HC), BD-II and UD subjects. Results showed that compare to HC, both BD-II and UD subjects had significantly decreased CNR and increased volume on the right and left sides. Moreover, the volume in BD-II group was significantly increased compared to UD group. The area under the receiver operating characteristic curve (AUC) for discriminating BD from HC was the largest for the Volume-L (AUC, 0.85; 95% confidence interval [CI]: 0.77, 0.93). The AUC for discriminating UD from HC was the largest for the Volume-L (AUC, 0.76; 95% CI: 0.65, 0.86). Furthermore, the AUC for discriminating BD from UD was the largest for the Volume-R (AUC, 0.73; 95% CI: 0.62, 0.84). Our findings suggest that neuromelanin-sensitive magnetic resonance imaging techniques can be used to differentiate BD-II from UD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo , Melaninas , Humanos , Trastorno Bipolar/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen
4.
Neuroimage ; 291: 120588, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537765

RESUMEN

BACKGROUND: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS: This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS: PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS: PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Porción Compacta de la Sustancia Negra , Imagen por Resonancia Magnética/métodos , Melaninas
5.
J Neurochem ; 168(2): 128-141, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38178798

RESUMEN

Abnormal metal distribution in vulnerable brain regions is involved in the pathogenesis of most neurodegenerative diseases, suggesting common molecular mechanisms of metal dyshomeostasis. This study aimed to compare the intra- and extra-neuronal metal content and the expression of proteins related to metal homeostasis in the substantia nigra (SN) from patients with Parkinson's disease (PD), multiple sclerosis (MS), and control subjects. Metal quantification was performed via ion-beam micro-analysis in neuromelanin-positive neurons and the surrounding tissue. For proteomic analysis, SN tissue lysates were analyzed on a nanoflow chromatography system hyphenated to a hybrid triple-quadrupole time-of-flight mass spectrometer. We found increased amounts of iron in neuromelanin-positive neurons and surrounding tissue in patients with PD and MS compared to controls (4- to 5-fold higher) that, however, also showed large inter-individual variations. Copper content was systematically lower (-2.4-fold) in neuromelanin-positive neurons of PD patients compared with controls, whereas it remained unchanged in MS. Protein-protein interaction (PPI) network analyses revealed clusters related to Fe and Cu homeostasis among PD-deregulated proteins. An enrichment for the term "metal homeostasis" was observed for MS-deregulated proteins. Important deregulated hub proteins included hemopexin and transferrin in PD, and calreticulin and ferredoxin reductase in MS. Our findings show that PD and MS share commonalities in terms of iron accumulation in the SN. Concomitant proteomics experiments revealed PPI networks related to metal homeostasis, substantiating the results of metal quantification.


Asunto(s)
Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Proteómica , Esclerosis Múltiple/metabolismo , Sustancia Negra/patología , Metales/metabolismo , Hierro/metabolismo , Melaninas/análisis , Melaninas/metabolismo
6.
Eur J Neurosci ; 59(10): 2616-2627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441250

RESUMEN

Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.


Asunto(s)
Biomarcadores , Imagen por Resonancia Magnética , Melaninas , Enfermedad de Parkinson , Humanos , Melaninas/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Imagen por Resonancia Magnética/métodos , Biomarcadores/metabolismo , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Porción Compacta de la Sustancia Negra/metabolismo
7.
Hum Brain Mapp ; 45(1): e26544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041476

RESUMEN

Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.


Asunto(s)
Melaninas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Biomarcadores/metabolismo , Sustancia Negra/metabolismo
8.
Neuropathol Appl Neurobiol ; 50(1): e12965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374720

RESUMEN

AIMS: In Alzheimer's disease (AD), the locus coeruleus (LC) undergoes early and extensive neuronal loss, preceded by abnormal intracellular tau aggregation, decades before the onset of clinical disease. Neuromelanin-sensitive MRI has been proposed as a method to image these changes during life. Surprisingly, human post-mortem studies have not examined how changes in LC during the course of the disease relate to cerebral pathology following the loss of the LC projection to the cortex. METHODS: Immunohistochemistry was used to examine markers for 4G8 (pan-Aß) and AT8 (ptau), LC integrity (neuromelanin, dopamine ß-hydroxylase [DßH], tyrosine hydroxylase [TH]) and microglia (Iba1, CD68, HLA-DR) in the LC and related temporal lobe pathology of 59 post-mortem brains grouped by disease severity determined by Braak stage (0-II, III-IV and V-VI). The inflammatory environment was assessed using multiplex assays. RESULTS: Changes in the LC with increasing Braak stage included increased neuronal loss (p < 0.001) and microglial Iba1 (p = 0.005) together with a reduction in neuromelanin (p < 0.001), DßH (p = 0.002) and TH (p = 0.041). Interestingly in LC, increased ptau and loss of neuromelanin were detected from Braak stage III-IV (p = 0.001). At Braak stage V/VI, the inflammatory environment was different in the LC vs TL, highlighting the anatomical heterogeneity of the inflammatory response. CONCLUSIONS: Here, we report the first quantification of neuromelanin during the course of AD and its relationship to AD pathology and neuroinflammation in the TL. Our findings of neuromelanin loss early in AD and before the neuroinflammatory reaction support the use of neuromelanin-MRI as a sensitive technique to identify early changes in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/metabolismo , Proteínas tau/metabolismo , Encéfalo/patología , Autopsia
9.
J Neural Transm (Vienna) ; 131(3): 213-228, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38238531

RESUMEN

The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.


Asunto(s)
Cisteinildopa/análogos & derivados , Dopamina , Enfermedad de Parkinson , Humanos , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Dihidroxifenilalanina , Encéfalo/metabolismo , Catecoles/metabolismo , Envejecimiento
10.
Brain ; 146(3): 1040-1052, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717986

RESUMEN

Humans accumulate with age the dark-brown pigment neuromelanin inside specific neuronal groups. Neurons with the highest neuromelanin levels are particularly susceptible to degeneration in Parkinson's disease, especially dopaminergic neurons of the substantia nigra, the loss of which leads to characteristic motor Parkinson's disease symptoms. In contrast to humans, neuromelanin does not appear spontaneously in most animals, including rodents, and Parkinson's disease is an exclusively human condition. Using humanized neuromelanin-producing rodents, we recently found that neuromelanin can trigger Parkinson's disease pathology when accumulated above a specific pathogenic threshold. Here, by taking advantage of this newly developed animal model, we assessed whether the intracellular build-up of neuromelanin that occurs with age can be slowed down in vivo to prevent or attenuate Parkinson's disease. Because neuromelanin derives from the oxidation of free cytosolic dopamine, we enhanced dopamine vesicular encapsulation in the substantia nigra of neuromelanin-producing rats by viral vector-mediated overexpression of vesicular monoamine transporter 2 (VMAT2). This strategy reduced the formation of potentially toxic oxidized dopamine species that can convert into neuromelanin and maintained intracellular neuromelanin levels below their pathogenic threshold. Decreased neuromelanin production was associated with an attenuation of Lewy body-like inclusion formation and a long-term preservation of dopamine homeostasis, nigrostriatal neuronal integrity and motor function in these animals. Our results demonstrate the feasibility and therapeutic potential of modulating age-dependent intracellular neuromelanin production in vivo, thereby opening an unexplored path for the treatment of Parkinson's disease and, in a broader sense, brain ageing.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratas , Animales , Enfermedad de Parkinson/patología , Dopamina , Melaninas , Sustancia Negra/patología , Neuronas Dopaminérgicas/patología
11.
Bioorg Chem ; 150: 107612, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986418

RESUMEN

The high level of tyrosinase leads to the generation of neuromelanin, further causing the abnormality of redox-related protein level and mediating the occurrence and development of Parkinson's disease (PD). However, the existing tyrosinase inhibitors are mostly natural product extracts or polyphenolic derivatives, which hindered them from penetrating the blood-brain barrier (BBB). Herein, we obtained a novel tyrosinase inhibitor, 2-06 (tyrosinase: monophenolase IC50 = 70.44 ± 22.69 µM, diphenolase IC50 = 1.89 ± 0.64 µM), through the structure-based screening method. The compound 2-06 presented good in vitro and in vivo safety, and can inhibit the tyrosinase and melanogenesis in B16F10. Moreover, this compound showed neuroprotective effects and Parkinsonism behavior improving function. 2-06 was proved to penetrate the BBB and enter the central nervous system (CNS). The exploration of the binding mode between 2-06 and tyrosinase provided the foundation for the subsequent structural optimization. This is the first research to develop a central-targeting tyrosinase inhibitor, which is crucial for in-depth study on the new strategy for utilizing tyrosinase inhibitors to treat PD.


Asunto(s)
Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Enfermedad de Parkinson , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Humanos , Masculino , Simulación del Acoplamiento Molecular , Barrera Hematoencefálica/metabolismo
12.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126026

RESUMEN

Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.


Asunto(s)
Melaninas , Melanoma , Espectrometría de Fluorescencia , Humanos , Hipoxia/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Melanoma/patología , Espectrometría de Fluorescencia/métodos
13.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396687

RESUMEN

The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo/fisiología , Metabolismo Energético
14.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892387

RESUMEN

The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.


Asunto(s)
Encéfalo , Pigmentación de la Piel , Piel , Rayos Ultravioleta , Humanos , Pigmentación de la Piel/efectos de la radiación , Encéfalo/metabolismo , Animales , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Melaninas/metabolismo , Melaninas/biosíntesis , Transducción de Señal , Conducta
15.
J Neurosci ; 42(16): 3484-3493, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35277392

RESUMEN

Response inhibition is a core executive function enabling adaptive behavior in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer (MT)-sensitive magnetic resonance imaging (MRI), in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioral change. Here, we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used MT MRI images from N = 63 healthy humans aged above 50 years (of either sex) who performed a Stop-Signal Task (SST), with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between presupplementary motor area (preSMA) and right inferior frontal gyrus (rIFG), but not volumes of the prefrontal cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behavior, where this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.SIGNIFICANCE STATEMENT We show that the integrity of the locus coeruleus, the principal source of cortical noradrenaline, is related to the efficiency of response inhibition in healthy older adults. This effect is in part mediated by its effect on functional connectivity in a prefrontal cortical stopping-network. The behavioral effect, and its mediation by connectivity, are moderated by age. This supports the psychopharmacological and genetic evidence for the noradrenergic regulation of behavioral control, in a population-based normative cohort. Noradrenergic treatment strategies may be effective to improve behavioral control in impulsive clinical populations, but age, and locus coeruleus integrity, are likely to be important stratification factors.


Asunto(s)
Locus Coeruleus , Corteza Motora , Anciano , Animales , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Imagen por Resonancia Magnética/métodos , Corteza Motora/fisiología , Norepinefrina/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología
16.
Neuroimage ; 266: 119814, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528314

RESUMEN

BACKGROUND AND PURPOSE: Early diagnosis of Parkinson's disease (PD) is still a clinical challenge. Most previous studies using manual or semi-automated methods for segmenting the substantia nigra (SN) are time-consuming and, despite raters being well-trained, individual variation can be significant. In this study, we used a template-based, automatic, SN subregion segmentation pipeline to detect the neuromelanin (NM) and iron features in the SN and SN pars compacta (SNpc) derived from a single 3D magnetization transfer contrast (MTC) gradient echo (GRE) sequence in an attempt to develop a comprehensive imaging biomarker that could be used to diagnose PD. MATERIALS AND METHODS: A total of 100 PD patients and 100 age- and sex-matched healthy controls (HCs) were imaged on a 3T scanner. NM-based SN (SNNM) boundaries and iron-based SN (SNQSM) boundaries and their overlap region (representing the SNpc) were delineated automatically using a template-based SN subregion segmentation approach based on quantitative susceptibility mapping (QSM) and NM images derived from the same MTC-GRE sequence. All PD and HC subjects were evaluated for the nigrosome-1 (N1) sign by two raters independently. Receiver Operating Characteristic (ROC) analyses were performed to evaluate the utility of SNNM volume, SNQSM volume, SNpc volume and iron content with a variety of thresholds as well as the N1 sign in diagnosing PD. Correlation analyses were performed to study the relationship between these imaging measures and the clinical scales in PD. RESULTS: In this study, we verified the value of the fully automatic template based midbrain deep gray matter mapping approach in differentiating PD patients from HCs. The automatic segmentation of the SN in PD patients led to satisfactory DICE similarity coefficients and volume ratio (VR) values of 0.81 and 1.17 for the SNNM, and 0.87 and 1.05 for the SNQSM, respectively. For the HC group, the average DICE similarity coefficients and VR values were 0.85 and 0.94 for the SNNM, and 0.87 and 0.96 for the SNQSM, respectively. The SNQSM volume tended to decrease with age for both the PD and HC groups but was more severe for the PD group. For diagnosing PD, the N1 sign performed reasonably well by itself (Area Under the Curve (AUC) = 0.783). However, combining the N1 sign with the other quantitative measures (SNNM volume, SNQSM volume, SNpc volume and iron content) resulted in an improved diagnosis of PD with an AUC as high as 0.947 (using an SN threshold of 50ppb and an NM threshold of 0.15). Finally, the SNQSM volume showed a negative correlation with the MDS-UPDRS III (R2 = 0.1, p = 0.036) and the Hoehn and Yahr scale (R2 = 0.04, p = 0.013) in PD patients. CONCLUSION: In summary, this fully automatic template based deep gray matter mapping approach performs well in the segmentation of the SN and its subregions for not only HCs but also PD patients with SN degeneration. The combination of the N1 sign with other quantitative measures (SNNM volume, SNQSM volume, SNpc volume and iron content) resulted in an AUC of 0.947 and provided a comprehensive set of imaging biomarkers that, potentially, could be used to diagnose PD clinically.


Asunto(s)
Hierro , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen , Biomarcadores
17.
Neurobiol Dis ; 180: 106084, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931531

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) could develop preceding or come after motor symptoms during Parkinson's disease (PD). It remains unknown that whether PD with different timing of RBD onset relative to motor symptoms suggests different spatiotemporal sequence of neurodegeneration. This study aimed to explore the sequence of disease progression in crucially involved brain regions in PD with different timing of RBD onset. METHOD: We recruited 157 PD, 16 isolated RBD (iRBD), and 78 healthy controls. PD patients were identified as (1) PD with RBD preceding motor symptoms (PD-preRBD, n = 50), (2) PD with RBD posterior to motor symptoms (PD-postRBD, n = 31), (3) PD without RBD (PD-nonRBD, n = 75). The volumes of crucial brain regions, including the basal ganglia and limbic structures in T1-weighted imaging, and the contrast-noise-ratios of locus coeruleus (LC) and substantia nigra (SN) in neuromelanin-sensitive magnetic resonance imaging, were extracted. To simulate the sequence of disease progression for cross-sectional data, an event-based model was introduced to estimate the maximum likelihood sequence of regions' involvement for each group. Then, a statistical parameter, the Bhattacharya coefficient (BC), was used to evaluate the similarity of the sequence. RESULTS: The model predicted that SN occupied the highest likelihood in the maximum likelihood sequence of disease progression in the all PD subgroups, while LC was specifically positioned earlier to SN in iRBD, a prodromal phase of PD. Subsequent early involvement of LC was observed in the both PD-preRBD and PD-postRBD. In contrast, atrophy in the para-hippocampal gyrus but relatively intact LC in the early stage was demonstrated in PD-nonRBD. Then, the similarity comparisons indicated higher BC between PD-postRBD and PD-preRBD (BC = 0.76) but lower BC between PD-postRBD and PD-nonRBD group (BC = 0.41). iRBD had higher BC against PD-preRBD (BC = 0.66) and PD-postRBD (BC = 0.63) but lower BC against PD- nonRBD (BC = 0.48). CONCLUSION: The spatiotemporal sequence of neurodegeneration between PD-pre and PD-post were similar but distinct from PD-nonRBD. The presence of RBD may be the essential factor for differentiating the degeneration patterns of PD, but the timing of RBD onset has currently proved to be not.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/patología , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Progresión de la Enfermedad
18.
Mov Disord ; 38(2): 185-195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350228

RESUMEN

Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/patología , Melaninas/metabolismo , Pigmentación de la Piel , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
19.
Mov Disord ; 38(3): 479-484, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592065

RESUMEN

BACKGROUND: The locus coeruleus/subcoeruleus complex (LC/LsC) is a structure comprising melanized noradrenergic neurons. OBJECTIVE: To study the LC/LsC damage across Parkinson's disease (PD) and atypical parkinsonism in a large group of subjects. METHODS: We studied 98 healthy control subjects, 47 patients with isolated rapid eye movement sleep behavior disorder (RBD), 75 patients with PD plus RBD, 142 patients with PD without RBD, 19 patients with progressive supranuclear palsy (PSP), and 19 patients with multiple system atrophy (MSA). Twelve patients with MSA had proven RBD. LC/LsC signal intensity was derived from neuromelanin magnetic resonance imaging using automated software. RESULTS: The signal intensity was reduced in all parkinsonian syndromes compared with healthy control subjects, except in PD without RBD. The signal intensity decreased as age increased. Moreover, the signal intensity was lower in MSA than in isolated RBD and PD without RBD groups. In PD, the signal intensity correlated negatively with the percentage of REM sleep without atonia. There were no differences in signal intensity between PD plus RBD, PSP, and MSA. CONCLUSIONS: Neuromelanin signal intensity was reduced in all parkinsonian disorders, except in PD without RBD. The presence of RBD in parkinsonian disorders appears to be associated with lower neuromelanin signal intensity. Furthermore, lower LC/LsC signal changes in PSP could be partly caused by the effect of age. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Trastornos Parkinsonianos/complicaciones , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/patología , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética/métodos
20.
J Magn Reson Imaging ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915245

RESUMEN

BACKGROUND: There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE: Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE: Prospective. SUBJECTS: Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE: 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT: N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS: Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS: N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5 ; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5 ; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5 ; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5 ). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION: This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA