Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(2): 361-378.e25, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34982960

RESUMEN

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.


Asunto(s)
Adaptación Fisiológica , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fluorescencia , Simulación del Acoplamiento Molecular , Membrana Nuclear/metabolismo , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Dominios Proteicos , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Annu Rev Biochem ; 88: 725-783, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30883195

RESUMEN

The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.


Asunto(s)
Modelos Moleculares , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eucariontes/metabolismo , Eucariontes/ultraestructura , Humanos , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/química , Conformación Proteica , Subunidades de Proteína , ARN Mensajero/metabolismo
3.
Cell ; 173(4): 958-971.e17, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628143

RESUMEN

Defects in nucleocytoplasmic transport have been identified as a key pathogenic event in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mediated by a GGGGCC hexanucleotide repeat expansion in C9ORF72, the most common genetic cause of ALS/FTD. Furthermore, nucleocytoplasmic transport disruption has also been implicated in other neurodegenerative diseases with protein aggregation, suggesting a shared mechanism by which protein stress disrupts nucleocytoplasmic transport. Here, we show that cellular stress disrupts nucleocytoplasmic transport by localizing critical nucleocytoplasmic transport factors into stress granules, RNA/protein complexes that play a crucial role in ALS pathogenesis. Importantly, inhibiting stress granule assembly, such as by knocking down Ataxin-2, suppresses nucleocytoplasmic transport defects as well as neurodegeneration in C9ORF72-mediated ALS/FTD. Our findings identify a link between stress granule assembly and nucleocytoplasmic transport, two fundamental cellular processes implicated in the pathogenesis of C9ORF72-mediated ALS/FTD and other neurodegenerative diseases.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Proteína C9orf72/genética , Demencia Frontotemporal/patología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Arsenitos/toxicidad , Ataxina-2/antagonistas & inhibidores , Ataxina-2/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Femenino , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/metabolismo , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Compuestos de Sodio/toxicidad , alfa Carioferinas/antagonistas & inhibidores , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
4.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28471691

RESUMEN

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Asunto(s)
Membrana Celular/ultraestructura , Clatrina/química , Proteína Coat de Complejo I/química , Vesículas Cubiertas/ultraestructura , Células Eucariotas/ultraestructura , Proteínas de Unión al GTP Monoméricas/química , Transporte Activo de Núcleo Celular , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Vesículas Cubiertas/química , Vesículas Cubiertas/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Evolución Molecular , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Expresión Génica , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos
5.
Mol Cell ; 83(18): 3283-3302.e5, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738963

RESUMEN

Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.


Asunto(s)
Poro Nuclear , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte de Membrana
6.
EMBO J ; 43(16): 3388-3413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38918634

RESUMEN

Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.


Asunto(s)
Proteínas de Unión al ADN , Neuronas , Hidrolasas Diéster Fosfóricas , Vía de Señalización Wnt , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Animales , Neuronas/metabolismo , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(4): e2313737121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241438

RESUMEN

Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.


Asunto(s)
Cápside , VIH-1 , Humanos , Cápside/metabolismo , VIH-1/genética , Poro Nuclear/metabolismo , Proteínas de la Cápside/genética , Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/metabolismo , Translocación Genética , Elasticidad
8.
Bioessays ; 46(2): e2300182, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38044581

RESUMEN

Transport of macromolecules from the nucleus to the cytoplasm is essential for nearly all cellular and developmental events, and when mis-regulated, is associated with diseases, tumor formation/growth, and cancer progression. Nuclear Envelope (NE)-budding is a newly appreciated nuclear export pathway for large macromolecular machineries, including those assembled to allow co-regulation of functionally related components, that bypasses canonical nuclear export through nuclear pores. In this pathway, large macromolecular complexes are enveloped by the inner nuclear membrane, transverse the perinuclear space, and then exit through the outer nuclear membrane to release its contents into the cytoplasm. NE-budding is a conserved process and shares many features with nuclear egress mechanisms used by herpesviruses. Despite its biological importance and clinical relevance, little is yet known about the regulatory and structural machineries that allow NE-budding to occur in any system. Here we summarize what is currently known or proposed for this intriguing nuclear export process.


Asunto(s)
Herpesviridae , Membrana Nuclear , Membrana Nuclear/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Herpesviridae/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(7): e2212874120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36757893

RESUMEN

Nuclear pore complexes (NPCs) are the main conduits for macromolecular transport into and out of the nucleus of eukaryotic cells. The central component of the NPC transport mechanism is an assembly of intrinsically disordered proteins (IDPs) that fills the NPC channel. The channel interior is further crowded by large numbers of simultaneously translocating cargo-carrying and free transport proteins. How the NPC can efficiently, rapidly, and selectively transport varied cargoes in such crowded conditions remains ill understood. Past experimental results suggest that the NPC is surprisingly resistant to clogging and that transport may even become faster and more efficient as the concentration of transport protein increases. To understand the mechanisms behind these puzzling observations, we construct a computational model of the NPC comprising only a minimal set of commonly accepted consensus features. This model qualitatively reproduces the previous experimental results and identifies self-regulating mechanisms that relieve crowding. We show that some of the crowding-alleviating mechanisms-such as preventing saturation of the bulk flux-are "robust" and rely on very general properties of crowded dynamics in confined channels, pertaining to a broad class of selective transport nanopores. By contrast, the counterintuitive ability of the NPC to leverage crowding to achieve more efficient single-molecule translocation is "fine-tuned" and relies on the particular spatial architecture of the IDP assembly in the NPC channel.


Asunto(s)
Nanoporos , Autocontrol , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Núcleo Celular/metabolismo , Transporte Activo de Núcleo Celular/fisiología
10.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38438257

RESUMEN

DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.


Asunto(s)
Distonía Muscular Deformante , Distonía , Trastornos Distónicos , Proteína de Unión al GTP ran , Humanos , Transporte Activo de Núcleo Celular , Chaperonas Moleculares/genética , Neuronas Motoras/metabolismo
11.
Genes Cells ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987995

RESUMEN

Heat stress strongly triggers the nuclear localization of the molecular chaperone HSP70. Hikeshi functions as a unique nuclear import carrier of HSP70. However, how the nuclear import of HSP70 is activated in response to heat stress remains unclear. Here, we investigated the effects of heat on the nuclear import of HSP70. In vitro transport assays revealed that pretreatment of the test samples with heat facilitated the nuclear import of HSP70. Furthermore, binding of Hikeshi to HSP70 increased when temperatures rose. These results indicated that heat is one of the factors that activates the nuclear import of HSP70. Previous studies showed that the F97A mutation in Hikeshi in an extended loop induced an opening in the hydrophobic pocket and facilitated the translocation of Hikeshi through the nuclear pore complex. We found that nuclear accumulation of HSP70 occurred at a lower temperature in cells expressing the Hikeshi-F97A mutant than in cells expressing wild-type Hikeshi. Collectively, our results show that the movement of the extended loop may play an important role in the interaction of Hikeshi with both FG (phenylalanine-glycine)-nucleoporins and HSP70 in a temperature-dependent manner, resulting in the activation of nuclear import of HSP70 in response to heat stress.

12.
Semin Cell Dev Biol ; 121: 82-98, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34426066

RESUMEN

Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.


Asunto(s)
Carioferinas/metabolismo , Espermatogénesis/genética , Animales , Fertilidad , Masculino , Ratones
13.
J Biol Chem ; 299(2): 102806, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529289

RESUMEN

Karyopherin-ß2 (Kapß2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapß2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapß2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapß2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapß2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapß2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapß2 recapitulate all salient features of Kapß2 activity. By contrast, Kapß2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapß2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.


Asunto(s)
Chaperonas Moleculares , Fragmentos de Péptidos , Priones , Proteína FUS de Unión a ARN , beta Carioferinas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo , Línea Celular , Dependovirus/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/terapia , Técnicas In Vitro , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Priones/química , Priones/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica
14.
EMBO J ; 39(8): e102811, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32175624

RESUMEN

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72-specific pathology and TDP-43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly-GA promoted cytoplasmic mislocalization and aggregation of TDP-43 non-cell-autonomously, and anti-GA antibodies ameliorated TDP-43 mislocalization in both donor and receiver cells. Cell-to-cell transmission of poly-GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP-43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly-GA-dependent mislocalization of TDP-43. Boosting proteasome function with rolipram reduced both poly-GA and TDP-43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly-GA promotes TDP-43 aggregation by inhibiting the proteasome cell-autonomously and non-cell-autonomously, which can be prevented by inhibiting poly-GA transmission with antibodies or boosting proteasome activity with rolipram.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/metabolismo , Proteínas de Unión al ADN/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/patología , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Demencia Frontotemporal/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Neuronas/metabolismo , Señales de Localización Nuclear , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas , Ubiquitina/metabolismo
15.
Subcell Biochem ; 102: 53-75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600129

RESUMEN

Development from embryo to adult, organismal homeostasis and ageing are consecutive processes that rely on several functions of the nuclear envelope (NE). The NE compartmentalises the eukaryotic cells and provides physical stability to the genetic material in the nucleus. It provides spatiotemporal regulation of gene expression by controlling nuclear import and hence access of transcription factors to target genes as well as organisation of the genome into open and closed compartments. In addition, positioning of chromatin relative to the NE is important for DNA replication and repair and thereby also for genome stability. We discuss here the relevance of the NE in two classes of age-related human diseases. Firstly, we focus on the progeria syndromes Hutchinson-Gilford (HGPS) and Nestor-Guillermo (NGPS), which are caused by mutations in the LMNA and BANF1 genes, respectively. Both genes encode ubiquitously expressed components of the nuclear lamina that underlines the nuclear membranes. HGPS and NGPS patients manifest symptoms of accelerated ageing and cells from affected individuals show similar defects as cells from healthy old donors, including signs of increased DNA damage and epigenetic alternations. Secondly, we describe how several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis and Huntington's disease, are related with defects in nucleocytoplasmic transport. A common feature of this class of diseases is the accumulation of nuclear pore proteins and other transport factors in inclusions. Importantly, genetic manipulations of the nucleocytoplasmic transport machinery can alleviate disease-related phenotypes in cell and animal models, paving the way for potential therapeutic interventions.


Asunto(s)
Envejecimiento , Membrana Nuclear , Progeria , Adulto , Animales , Humanos , Envejecimiento/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Membrana Nuclear/metabolismo , Progeria/genética
16.
Mol Cell Neurosci ; 127: 103888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37598897

RESUMEN

Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation. Yet, how histone acetyltransferases (HATs) respond to extracellular cues in the in vivo brain to drive HA-mediated activity-dependent gene control remains unclear. We previously demonstrated that extracellular stimulation of rat hippocampal neurons in vitro triggers Tip60 HAT nuclear import with concomitant synaptic gene induction. Here, we focus on investigating Tip60 HAT subcellular localization and NCT specifically in neuronal activity-dependent gene control by using the learning and memory mushroom body (MB) region of the Drosophila brain as a powerful in vivo cognitive model system. We used immunohistochemistry (IHC) to compare the subcellular localization of Tip60 HAT in the Drosophila brain under normal conditions and in response to stimulation of fly brain neurons in vivo either by genetically inducing potassium channels activation or by exposure to natural positive ED conditions. Furthermore, we found that both inducible and ED condition-mediated neural induction triggered Tip60 nuclear import with concomitant induction of previously identified Tip60 target genes and that Tip60 levels in both the nucleus and cytoplasm were significantly decreased in our well-characterized Drosophila AD model. Mutagenesis of a putative nuclear localization signal (NLS) sequence and nuclear export signal (NES) sequence that we identified in the Drosophila Tip60 protein revealed that both are functionally required for appropriate Tip60 subcellular localization. Our results support a model by which neuronal stimulation triggers Tip60 NCT via its NLS and NES sequences to promote induction of activity-dependent neuroplasticity gene transcription and that this process may be disrupted in AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Drosophila , Animales , Ratas , Transporte Activo de Núcleo Celular , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Regulación de la Expresión Génica , Drosophila/metabolismo , Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Histona Acetiltransferasas
17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504007

RESUMEN

The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates. Finally, the three-dimensional (3D) nuclear export routes of these mRNA substrates through native NPCs in the absence of specific BSK proteins were obtained and further validated via postlocalization computational simulations. We found that these BSK proteins possess the stoichiometric ratio of 1:1:1 and play distinct roles in the nuclear export of mRNAs within live cells. The absence of Tpr from the NPC predominantly reduces the probability of nuclear mRNAs entering the NPC for export. Complete depletion of Nup153 and Nup50 results in an mRNA nuclear export efficiency decrease of approximately four folds. mRNAs can gain their maximum successful export efficiency as the copy number of Nup153 increased from zero to only half the full complement natively within the NPC. Lastly, the absence of Tpr or Nup153 seems to alter the 3D export routes of mRNAs as they pass through the NPC. However, the removal of Nup50 alone has almost no impact upon mRNA export route and kinetics.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas Nucleares/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , ARN Mensajero/genética
18.
J Cell Mol Med ; 27(8): 1045-1055, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36916534

RESUMEN

Sentrin/small ubiquitin-like modifier (SUMO) has emerged as a powerful mediator regulating biological processes and participating in pathophysiological processes that cause human diseases, such as cancer, myocardial fibrosis and neurological disorders. Sumoylation has been shown to play a positive regulatory role in keloids. However, the sumoylation mechanism in keloids remains understudied. We proposed that sumoylation regulates keloids via a complex. RanGAP1 acted as a synergistic, functional partner of SUMOs in keloids. Nuclear accumulation of Smad4, a TGF-ß/Smad pathway member, was associated with RanGAP1 after SUMO1 inhibition. RanGAP1*SUMO1 mediated the nuclear accumulation of Smad4 due to its impact on nuclear export and reduction in the dissociation of Smad4 and CRM1. We clarified a novel mechanism of positive regulation of sumoylation in keloids and demonstrated the function of sumoylation in Smad4 nuclear export. The NPC-associated RanGAP1*SUMO1 complex functions as a disassembly machine for the export receptor CRM1 and Smad4. Our research provides new perspectives for the mechanisms of keloids and nucleocytoplasmic transport.


Asunto(s)
Proteínas Activadoras de GTPasa , Queloide , Proteína Smad4 , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Queloide/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Sumoilación
19.
Dev Biol ; 492: 79-86, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36206829

RESUMEN

Collective cell migration is essential for embryonic development, tissue regeneration and repair, and has been implicated in pathological conditions such as cancer metastasis. It is, in part, directed by external cues that promote front-to-rear polarity in individual cells. However, our understanding of the pathways that underpin the directional movement of cells in response to external cues remains incomplete. To examine this issue we made use of neural crest cells (NC), which migrate as a collective during development to generate vital structures including bones and cartilage. Using a candidate approach, we found an essential role for Ran-binding protein 1 (RanBP1), a key effector of the nucleocytoplasmic transport pathway, in enabling directed migration of these cells. Our results indicate that RanBP1 is required for establishing front-to-rear polarity, so that NCs are able to chemotax. Moreover, our work suggests that RanBP1 function in chemotaxis involves the polarity kinase LKB1/PAR4. We envisage that regulated nuclear export of LKB1 through Ran/RanBP1 is a key regulatory step required for establishing front-to-rear polarity and thus chemotaxis, during NC collective migration.


Asunto(s)
Cresta Neural , Proteínas Nucleares , Embarazo , Femenino , Humanos , Cresta Neural/metabolismo , Proteínas Nucleares/metabolismo , Movimiento Celular/fisiología , Quimiotaxis
20.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33912945

RESUMEN

Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the ß-karyopherin (Kapß) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapßs, cargoes and Ran to establish the asymmetry of NCT.


Asunto(s)
Carioferinas , Proteína de Unión al GTP ran , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA