Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 21(8): e202400717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837886

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 µg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Furina , Olea , Extractos Vegetales , Hojas de la Planta , SARS-CoV-2 , Serina Endopeptidasas , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Serina Endopeptidasas/metabolismo , Furina/metabolismo , Furina/antagonistas & inhibidores , Humanos , SARS-CoV-2/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Olea/química , Regulación hacia Abajo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
2.
Int J Neurosci ; : 1-15, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38153337

RESUMEN

BACKGROUND: Neuroprotective role of olive and its natural products can introduce them as alternative candidates for the management of neurodegenerative diseases including stroke. The present study was designed to evaluate whether pretreatment of olive oil and leaf extract can attenuate the most important destructive processes in cerebral ischemia called excitotoxicity. MATERIAL AND METHODS: The male rats were categorized into control, virgin olive oil (OVV), MCAO, MCAO + OVV (with doses of 0.25, 0.50 and 0.75 ml/kg as treatment groups), olive leaf extract, MCAO + olive leaf extract (with doses 50, 75 and 100 mg/kg as treatment groups) groups. Rats of treatment groups received gastric gavage with olive oil or leaf extract for 30 consecutive days. After pretreatment, the intraluminal filament technique was used to block middle cerebral artery (MCA) transiently. Neurological deficits, infarct volume and expression of Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) proteins were measured. RESULTS: The results revealed that olive oil at doses of 0.50 and 0.75 ml/kg reduced the infarction and neurological score and upregulated NCXs expression in rat brain. In addition, olive leaf extract at doses of 75 and 100 mg/kg attenuated the infarction and neurological score and enhanced NCXs expression in rat brain. CONCLUSION: These findings support the view that olive oil and leaf extract play the neuroprotective role in cerebral ischemia due to the upregulation of NCXs protein expression.

3.
Mutagenesis ; 38(3): 169-181, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37228020

RESUMEN

Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were applied as reducing and stabilizing agents to prepare colloidal 20-25 nm silver nanoparticles (Ag NPs). The Ag NPs were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The cytotoxic actions of coated Ag NPs, and their inorganic and organic components, were examined against trophoblast cells and human peripheral blood lymphocytes (PBLs), Gram-positive, Gram-negative bacteria, and yeast. The genotoxic potential was evaluated in PBLs in vitro with the comet assay. Ag/DOLE and Ag/OLE induced cytotoxic effects in both types of cells after 24 h exposure when silver concentrations were 0.025-0.2 mM. However, the most pronounced cytotoxicity exhibits Ag/OLE. Both colloids also caused reduced ROS production in both cell types at 0.1 mM and 0.2 mM, while bare Ag NPs did not alter ROS levels at any of the conditions. Functionalized Ag/DOLE and Ag/OLE did not show genotoxic effects in PBLs, while bare AgNPs increased DNA damage significantly only at 0.2 mM. Regarding the antimicrobial effects, the Ag/OLE had MIC values for all evaluated microorganisms from 0.0625 to less than 0.0312 mM. Also, the antimicrobial effect of Ag/DOLE was significantly higher on Gram-negative bacteria and yeast than on Gram-positive bacteria. Obtained results indicate that Ag/OLE induced the most pronounced biological effects, beneficial for its application as an antimicrobial agent, but with potential risks from exposure to high concentrations that could induce cytotoxicity in healthy human cells.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Humanos , Plata/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Saccharomyces cerevisiae/metabolismo , Trofoblastos/metabolismo , Antiinfecciosos/toxicidad , Antiinfecciosos/química , Linfocitos/metabolismo
4.
Chem Biodivers ; 20(8): e202300534, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498138

RESUMEN

Olive leaf extract is a valuable source of phenolic compounds; primarily, oleuropein (major component) and rutin. This natural olive leaf extract has potential use as a therapeutic agent for cancer treatment. However, its clinical application is hindered by poor pharmacokinetics and low stability. To overcome these limitations, this study aimed to enhance the anticancer activity and stability of oleuropein and rutin by loading them into PEGylated Nano-phytosomes. The developed PEGylated Nano-phytosomes exhibited favorable characteristics in terms of size, charge, and stability. Notably, the anticolonic cancer activity of the Pegylated Nano-phytosomes loaded with oleuropein (IC50=0.14 µM) and rutin (IC50=0.44 µM) surpassed that of pure oleuropein and rutin alone. This outcome highlights the advantageous impact of Nano-phytosomes to augment the anticancer potential of oleuropein and rutin. These results present a promising pathway for the future development of oleuropein and rutin Nano-phytosomes as effective options for passive tumor-targeted therapy, given their improved stability and efficacy.


Asunto(s)
Neoplasias , Olea , Rutina/farmacología , Antioxidantes , Iridoides/farmacología , Glucósidos Iridoides , Polietilenglicoles , Hojas de la Planta , Extractos Vegetales/farmacología
5.
Molecules ; 28(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677765

RESUMEN

Recent advances in biotechnology have ensured that one of the main olive tree by-products is olive leaf extract (OLE), a rich source in bioactive compounds. The aim of this work was to study the phenolic composition in different OLEs of three Tunisian varieties, namely, 'Sayali', 'Tkobri', and 'Neb Jmel'. The in vitro biodigestibility effect after 'Sayali' OLE addition to Californian-style 'Hojiblanca' table olives was also studied. This OLE contained bioactive molecules such as hydroxytyrosol, tyrosol, oleropeine, Procianidine B1 (PB1), and p-cumaric acid. These compounds were also found in fresh olives after OLE was added. Furthermore, from fresh extract to oral digestion, the detected amount of bioavailable phenol was higher; however, its content decreased according to each phase of gastric and intestinal digestion. In the final digestion phase, the number of phenols found was lower than that of fresh olives. In addition, the phenolic content of Californian-style 'Hojiblanca' table olives decreased during the in vitro digestion process. The antioxidant activity of this variety decreased by 64% and 88% after gastrointestinal digestion, being the highest antioxidant capacity found in both simulated gastric and intestinal fluid, respectively. The results show us that the 'Sayali' variety is rich in phenolic compounds that are bioavailable after digestion, which could be used at an industrial level due to the related health benefits.


Asunto(s)
Olea , Disponibilidad Biológica , Fenoles , Antioxidantes/farmacología , Extractos Vegetales
6.
Molecules ; 28(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37049708

RESUMEN

In the present work, direct incorporation of bioactive compounds onto the surface and interlayer of nanoclays before their incorporation into the final polymeric film was conducted, based on a green methodology developed by our group that is compatible with food packaging. This will lead to the higher thermal stability and the significant reduction of the loss of activity of the active ingredients during packaging configuration. On this basis, the essential oil (EO) components carvacrol (C), thymol (T) as well as olive leaf extract (OLE), which is used for the first time, were incorporated onto organo-modified montmorillonite (O) or inorganic bentonite (B) through the evaporation/adsorption method. The prepared bioactive nanocarriers were further mixed with low-density polyethylene (LDPE), via melt compounding, in order to prepare films for potential use as fresh fruit and vegetable packaging material. Characterization of the bioactive nanocarriers and films were performed through XRD, TGA, tensile, antimicrobial and antioxidant tests. Films with organically modified montmorillonite loaded with carvacrol (OC), thymol (OT) and olive leaf extract (OOLE) at 5% wt. showed better results in terms of mechanical properties. The films with polyethylene and organically modified montmorillonite loaded with carvacrol or thymol at 20% wt. (PE_OC20 and PE_OT20), as well as with olive leaf extract at 5 or 10 %wt., clay:bioactive substance ratio 1:0.5 and 10% compatibilizer (PE_OOLE5_MA10 and PE_OOLE10_MA10) exhibited the highest antioxidant activity. The resulting films displayed outstanding antimicrobial properties against Gram-negative Escherichia coli (E. coli) with the best results appearing in the films with 10% OC and OT.


Asunto(s)
Antiinfecciosos , Polietileno , Timol , Antioxidantes/farmacología , Arcilla , Bentonita , Escherichia coli , Antiinfecciosos/farmacología , Embalaje de Alimentos/métodos
7.
Cytokine ; 156: 155913, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640418

RESUMEN

Cytokine therapies have shown promising results against cancers. Cytokines are secreted naturally from different bodily cells. These have fewer side effects but higher specificity than chemotherapy and radiation therapy. In leukemia, changes in normal hematopoiesis and defective leukocyte production limit the efficacy of immunotherapy by reducing the count of functional immune cells. Therefore, the treatment of leukemia needs advanced therapeutics that can target multiple cancer sustaining mechanisms. In combination therapy, using two different therapeutic agents affect cancer growth in many ways and sometimes gives synergistic effects. Here, we examined the effect of the ethanolic olive leaf extract (EOLE) and IL-28B in combination. N-N' Ethyl-nitrosourea (ENU) induced leukemia in Swiss albino mice was treated with EOLE for four weeks and IL-28B for one week after confirming the development of leukemia. The combination of EOLE and IL-28B significantly reduced the blast cell and total WBC counts in the peripheral blood, altered the levels of various cytokines in plasma, and induced the functional activity of NK cells in leukemic mice. The induced NK activity correlates with increased expression of perforin and granzyme studied at the gene level through real-time (RT)-PCR. The treatment of leukemic mice with combined EOLE and IL-28B has also caused an increased serum IL-10 and IFN-γ level, and reduced serum TGF-ß indicates improved overall immunity. Altogether, the combination of EOLE and IL-28B has given substantial therapeutic activity against leukemia.


Asunto(s)
Leucemia , Olea , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Etilnitrosourea , Inmunoterapia , Interferón gamma/metabolismo , Leucemia/tratamiento farmacológico , Ratones , Olea/metabolismo , Extractos Vegetales/farmacología
8.
Drug Chem Toxicol ; 45(1): 197-208, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31645146

RESUMEN

This study is an attempt to characterize the chemical composition and antioxidant activity of olive leaves variety (namely Bouricha variety) that is very widespread in the East of Algeria. The aqueous extract (AE) of leaves was initially analyzed for its phenolic profile. Using the liquid chromatography coupled to tandem mass spectrometry analysis, it was possible to identify the predominant components in the AE of the leaves. This extract was hydrolyzed with acid and gave hydroxytyrosol (HT). AE and HT were evaluated for their 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, ferric reducing antioxidant power and total antioxidant activity by phosphomolybdenum method. The antioxidant and anti-asthmatic activities of these extracts were examined in a model of experimental asthma in Wistar rats. For measuring the intensity of the airway inflammation, oxidative stress parameters were analyzed in lungs and a histological study of this tissue was performed. The obtained results showed that the sensitization of the ovalbumin (OVA) group induced lung inflammation and severe lipid peroxidation (LPO) revealed by a significant increase in malondialdehyde (MDA) levels and a decrease in the non-enzymatic and enzymatic antioxidant systems. However, the administration of AE and HT extracts significantly improved the antioxidant state in asthma disease and provided evidence for the relation between phenolic compounds and the high antioxidant activity of olive leaves extracts, especially HT more than AE.


Asunto(s)
Asma , Olea , Argelia , Animales , Antioxidantes , Asma/inducido químicamente , Asma/tratamiento farmacológico , Extractos Vegetales/farmacología , Hojas de la Planta , Ratas , Ratas Wistar
9.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613498

RESUMEN

Interest in plant compounds has increased, given recent evidence regarding their role in human health due to their pleiotropic effects. For example, plant bioactive compounds present in food products, including polyphenols, are associated with preventive effects in various diseases, such as cancer or inflammation. Breast and colorectal cancers are among the most commonly diagnosed cancers globally. Although appreciable advances have been made in treatments, new therapeutic approaches are still needed. Thus, in this study, up to 28 olive leaf extracts were obtained during different seasons and using different drying temperatures. The influence of these conditions on total polyphenolic content (measured using Folin-Ciocalteu assays), antioxidant activity (using Trolox Equivalent Antioxidant Capacity and Ferric Reducing Ability of Plasma assays) and antiproliferative capacity (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assays) was tested in breast and colorectal cancer cells. Increased phenolic composition and antioxidant and antiproliferative capacity are noted in the extracts obtained from leaves harvested in autumn, followed by summer, spring and winter. Regarding drying conditions, although there is not a general trend, conditions using the highest temperatures lead to the optimal phenolic content and antioxidant and antiproliferative activities in most cases. These results confirm previously published studies and provide evidence in support of the influence of both harvesting and drying conditions on the biological activity of olive leaf extracts.


Asunto(s)
Neoplasias , Olea , Humanos , Antioxidantes/farmacología , Temperatura , Estaciones del Año , Fenoles/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/química
10.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014384

RESUMEN

Leaves of Olea europaea are a by-product of the olive oil industry and a dietary supplement with acknowledged antioxidant and anti-inflammatory activity but underestimated photoprotective potential. We investigated the protective effects of the LC-PDA-MS/MS standardized ethanol-water extract of olive leaves (OLE), containing 26.2% total phenols and 22.2% oleuropein, with underlying mechanisms against the UVA-induced oxidative damage in human dermal fibroblasts. Hs68 cells were pre-treated (24 h) with OLE (2.5-25 µg/mL) or the reference antioxidants, quercetin and ascorbic acid (25 µg/mL), followed by irradiation (8 J/cm2). OLE significantly reduced the UVA-induced DNA damage and reactive oxygen species (ROS) overproduction and increased the thioredoxin reductase (TrxR) expression and post-radiation viability of fibroblasts by inhibiting their apoptosis. Both intrinsic and extrinsic apoptotic signaling pathways appeared to be inhibited by OLE, but the activity of caspase 9 was the most reduced. We hypothesized that the TrxR up-regulation by OLE could have prevented the UVA-induced apoptosis of Hs68 cells. In addition, a significant decrease in UVA-induced secretion levels of tumor necrosis factor (TNF-α) and interleukin-2 (IL-2) was shown in human lymphocyte culture in response to OLE treatment. In summary, our results support the beneficial effect of OLE in an in vitro model and indicate its great potential for use in the cosmetic and pharmaceutical industry as a topical photoprotective, antioxidant, and anti-inflammatory agent.


Asunto(s)
Olea , Antioxidantes/farmacología , Fibroblastos , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta , Espectrometría de Masas en Tándem
11.
Food Technol Biotechnol ; 60(4): 520-532, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36816880

RESUMEN

Research background: Recently, natural plant extracts have been used to increase the nutritional value of food and to potentially reduce the absorbed fat and the formation of acrylamide in fried foods. Literature data on the use of edible polymers with nettle or olive leaf extracts are scarce. Experimental approach: The effect of novel coatings on colour, fat absorption, phenolic and sugar content, and acrylamide formation in deep-fat-fried fresh-cut potatoes was evaluated. Extracts of olive and nettle leaves were incorporated in carboxymethyl cellulose (CMC) and gum arabic, used as coatings for potatoes and applied before frying. This aimed to improve the nutritional quality of deep-fat-fried fresh-cut potatoes. Results and conclusions: Enrichment of the edible coatings with extracts resulted in a significant change in the visible colour of the potatoes before frying. Significant effect of the extract amount on the sensory characteristics of potatoes was also observed. Most importantly, the perception of characteristic potato odour and taste was not significantly affected by the coating. Although higher amounts of the extract (1.5%) resulted in higher phenolic mass fraction in fried potatoes, the sensory scores decreased. After frying, fat mass fraction in the coated potatoes was reduced by about 15% compared to the uncoated samples. The type of extract affected the total sugar mass fraction in fried potatoes, which was lower in the samples with coatings enriched with olive leaf than in those with nettle leaf. Only gum arabic coating had a reducing effect on acrylamide mass fraction by 17%. Based on all the obtained results, CMC and gum arabic coatings did not influence sensory properties, so they can be recommended as carriers of functional compounds or as a frying pre-treatment for potatoes with favourable effect on fat and acrylamide content. Novelty and scientific contribution: The knowledge obtained in this study can be exploited for preparation of coatings with functional compounds used as a pre-treatment for fried food with favourable effect on fat and acrylamide content.

12.
Eur J Nutr ; 60(4): 2111-2120, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33034707

RESUMEN

PURPOSE: Overweight and obesity are associated with many health problems, including cardiovascular disease (CVD). Evidence from previous studies has shown that extracts from olive leaves rich in olive phenolics are able to positively affect CVD risk factors, such as high blood pressure and dyslipidemia. The aim of this study was to investigate the effect of 8-week olive leaf extract (OLE) administration on blood lipid profiles in overweight/obese subjects with mildly elevated cholesterol levels. METHODS: In this randomized, double-blind, placebo-controlled study, 77 healthy adult overweight/obese subjects (aged 56 ± 10 years and BMI 29.0 ± 2.7 kg/m2) with total cholesterol levels of 5.0-8.0 mmol/L (5.9 ± 0.7 mmol/L) were randomly assigned to receive 500 mg of OLE (n = 39) or placebo (n = 38) for 8 weeks. In total, 74 subjects completed the entire study protocol. At baseline, after 4 weeks, and after 8 weeks of supplementation, blood lipid profiles, oxidized low-density lipoprotein (oxLDL), blood pressure, glucose, and insulin levels were assessed. In addition, liver function parameters were measured at baseline and after 8 weeks. RESULTS: OLE supplementation did not significantly affect blood lipid levels after 4 weeks or after 8 weeks compared to placebo (all p > 0.05). For oxLDL, blood pressure, glucose, and insulin levels and liver function parameters, also no statistically significant differences were found between the two intervention groups (all p > 0.05). CONCLUSIONS: Blood lipid profiles were not significantly affected by 8 weeks OLE supplementation in overweight/obese subjects with mildly elevated cholesterol levels. TRIAL REGISTERED: The trial has been registered at ClinicalTrials.gov (NCT02990637).


Asunto(s)
Olea , Adulto , Biomarcadores , Suplementos Dietéticos , Método Doble Ciego , Humanos , Obesidad/tratamiento farmacológico , Sobrepeso/tratamiento farmacológico , Extractos Vegetales
13.
Molecules ; 26(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279409

RESUMEN

Cancer is one of the most serious public health issues worldwide, ranking second only to cardiovascular diseases as a cause of death. Numerous plant extracts have extraordinary health benefits and have been used for centuries to treat a variety of ailments with few side effects. Olive leaves have a long history of medicinal and therapeutic use. In this study, the anti-cancer properties of an olive leaf extract were investigated in vitro using colorectal and prostate cancer cell lines (HT29 and PC3, respectively). A high-performance liquid chromatography analysis showed that the olive leaf extract contained a high chlorogenic acid content. Accordingly, chlorogenic acid may be related to the observed effects of the aqueous extract on cancer cells, including increased inhibition of cancer cell growth, migration, DNA fragmentation, cell cycle arrest at the S phase, reactive oxygen species (ROS) production, and altered gene expression. The effects of the extracts were greater in HT29 than in PC3 cells. These results suggest that chlorogenic acid, the main constituent in the olive extract, is a promising new anti-cancer agent. Further analyses should focus on its in vivo effects on colorectal tumor models, both alone and in combination with established agents.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Olea/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis , Ciclo Celular , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
14.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670606

RESUMEN

Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.


Asunto(s)
Factores Económicos , Salud , Inflamación/patología , Olea/metabolismo , Estrés Oxidativo , Metabolismo Secundario , Animales , Humanos , Olea/química
15.
Int J Cosmet Sci ; 43(6): 662-676, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34661292

RESUMEN

INTRODUCTION: Peroxisome proliferator-activated receptor (PPAR) agonists are known to modulate the synthesis of dermal lipids and proteins including collagens. Olive (Olea europaea) leaves have been reported to contain PPAR-binding ligands. Collagen IV, a major dermal-epidermal junction (DEJ) protein, degrades with both age and disease. Here, we report the formulation of a novel multi-ligand complex, Linefade, and its effects on collagen IV synthesis. METHODS: Linefade prepared from the leaves of Olea europaea contains 2% w/w plant extract solids dissolved in a mixture of glyceryl monoricinoleate and dimethyl isosorbide. In silico docking was performed with PPAR-α (PDB ID: 2P54). Linefade was evaluated for PPAR-α-dependent transcription in a luciferase reporter assay system. Cell viability and collagen IV levels in human dermal fibroblast cultures were measured using the MTT method and ELISA assay, respectively. Transcriptome analysis was conducted on a full-thickness reconstituted human skin (EpiDermFT) model. Ex vivo cell viability and collagen IV immunostaining were performed on human skin explants. RESULTS: In silico docking model of the major constituents (oleanolic acid and glyceryl monoricinoleate) produced a co-binding affinity of -6.7 Kcal/mole. Linefade significantly increased PPAR-α transcriptional activity in CHO cells and collagen IV synthesis in adult human dermal fibroblasts. Transcriptome analysis revealed that 1% Linefade modulated the expression of 280 genes with some related to epidermal differentiation, DEJ, PPAR, Nrf2 and retinoid pathways. An ex vivo human explant study showed that 1% Linefade, delivered via a triglycerides excipient, increased collagen IV levels along the dermal-epidermal junction by 52%. CONCLUSION: In silico modelling and in vitro and ex vivo analyses confirmed Linefade-mediated activation of PPAR-α and stimulation of collagen IV synthesis.


INTRODUCTION: Les agonistes du récepteur activé par les proliférateurs de peroxysomes (PPAR) sont connus pour moduler la synthèse des lipides cutanés et des protéines du derme, y compris des collagènes. Il a été signalé que les feuilles d'olivier (Olea europaea) contiennent des ligands de liaison aux PPAR. Le collagène IV, une protéine majeure de la jonction dermo-épidermique (DEJ), se dégrade avec l'âge et la maladie. Nous rapportons ici la formulation d'un nouveau complexe multi ligand, Linefade, et ses effets sur la synthèse du collagène IV. MÉTHODES: Le complexe Linefade préparé à partir des feuilles d'Olea europaea contient 2 % p/p de solides d'extraits végétaux dissous dans un mélange de monoricinoléate de glycéryle et d'isosorbide de diméthyle. Un docking in silico a été réalisé avec PPAR-α (PDB ID : 2P54). Linefade a été évalué pour la transcription dépendante du PPAR-α dans un système de test rapporteur à la luciférase. La viabilité cellulaire et les niveaux de collagène IV dans les cultures de fibroblastes dermiques humains ont été respectivement mesurés en utilisant la méthode MTT et le test ELISA. L'analyse du transcriptome a été réalisée sur un modèle de peau humaine reconstitué sur toute son épaisseur (EpiDermFT). La viabilité cellulaire ex vivo et l'immunomarquage du collagène IV ont été réalisés sur des explants de peau humaine. RÉSULTATS: Le modèle de docking in silico des principaux constituants (acide oléanolique et monoricinoléate de glycéryle) a produit une affinité de liaison conjointe de -6,7 Kcal/mole. Linefade a augmenté de manière significative l'activité transcriptionnelle du PPAR-α dans les cellules CHO et la synthèse du collagène IV dans les fibroblastes dermiques humains chez les personnes adultes. L'analyse du transcriptome a révélé que 1% de Linefade modulait l'expression de 280 gènes dont certains étaient liés à la différenciation épidermique, à la DEJ, au PPAR, à la voie Nrf2 et aux voies rétinoïdes. Une étude ex vivo sur des explants humains a montré que 1% de Linefade, délivré via un excipient de triglycérides, augmentait de 52% les niveaux de collagène IV le long de la jonction dermo-épidermique. CONCLUSION: La modélisation in silico et les analyses in vitro et ex vivo ont confirmé l'activation du PPAR-- α et la stimulation de la synthèse du collagène IV par Linefade.


Asunto(s)
Colágeno Tipo IV/efectos de los fármacos , Olea , PPAR alfa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Adulto , Células Cultivadas , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Hojas de la Planta
16.
J Food Sci Technol ; 58(8): 3073-3085, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34294970

RESUMEN

The effect of four edible hydrocolloid coatings (carboxymethyl cellulose, chitosan, pectin and gum arabic) on fresh-cut potato's colour, pH and moisture content during storage was studied. Possibility of coating enrichment with natural olive leaf extract and sodium ascorbate was also evaluated. Coatings scored as the best ones straight after coating or during storage for 7 days at 10 ± 1 °C, were used for deep fat frying of potato. Chitosan was shown to cause significant decrease in pH and browning of potato strips. Pectin was classified as good coating alone but in combination with olive leaf extract showed lower quality parameters of fresh-cut samples compared to control. Only carboxymethyl cellulose and gum arabic itself or enriched with olive leaf extract or sodium ascorbate were shown not to affect colour, pH and moisture during storage. Moreover, these coatings significantly reduced fat content in deep fat fried potato strips, without influence on L*, b*, whiteness index (WI), and ΔE.

17.
J Food Sci Technol ; 58(9): 3430-3443, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34366460

RESUMEN

This study was dedicated to the optimization and preparation of chitosan-coated liposomes (chitosomes) as promising nanocarriers for retention of olive leaf extract optimized by Response surface methodology (RSM) based on central composite design. Accordingly, the best sample was chosen for further tests with the encapsulation efficiency, stability and electrical conductivity of 94%, 98% and 9.545 mS respectively. The average size of the optimal chitosome and nanoliposome were lower than 100 nm and the zeta potential was altered from a negative charge to positive after addition coating process with chitosan. Moreover, the differential scanning calorimetry of blank and loaded chitosome revealed the increase of fluidity and lower temperature of phase transition in loaded chitosome compared to blank one. FTIR spectra demonstrated that electrostatic interactions and hydrogen bonds occur between phospholipid polar groups, chitosan amine moieties and major olive leaf extract polyphenols including oleuropein and hydroxy tyrosol. Furthermore, the optimal loaded chitosome had the highest stability during 25 days at the temperature of 4 °C. Finally, the in vitro release tests were best fitted with Peppas-Sahlin and Kopcha models in food simulants and gastrointestinal simulated juice respectively revealing erosion-based release model. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-021-04972-2).

18.
J Food Sci Technol ; 58(10): 4002-4010, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34471324

RESUMEN

This study was aimed to evaluate the effects of using different levels of olive (Olea europaea) leaf extract on fresh and preserved mutton meatballs. Meatballs were divided into four different groups and treated as T0 (0), T1 (0.1), T2 (0.2) and T3 (0.3%), respectively based on olive leaf extract supplementation. Days of intervals of experiment were 0, 5, 10 days. Samples were preserved at 4˚C for up to 10 days. Different types of analysis such as, sensory (color, flavor, juiciness and overall acceptability), proximate composition (CP %), physicochemical (pH), biochemical (POV, FFA and TBARS) and microbiological (TVC, TCC and TYMC) were determined. Color, flavor and acceptability reduced significantly (p < 0.05) with the increase of the storage periods. Values of the studied quality parameters in all the treatment groups differed significantly (p < 0.05). Based on our findings 0.3% olive leaf extract is found suitable to add in mutton meatballs as a source of natural antioxidant.

19.
Gen Comp Endocrinol ; 296: 113541, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32585215

RESUMEN

It is not desirable to use synthetic chemicals as growth promoters in aquaculture. Therefore, phytogenic compounds have been extensively studied in fish diets due to their growth promoter effects. Common carp (Cyprinus carpio) is widely distributed around the world and has been reared in Asia for several centuries. This study was conducted to determine the effects of olive leaf extract (OLE) (0, 0.1, 0.25, 0.50 and 1%) on the growth performance, digestive enzyme activity in the intestine and the expression levels of some growth-related genes in the brain. liver, head kidney and mucsle tissue of common carp C. carpio. At the end of the 60-day feeding period, there was a significant increase in growth performance in the OLE0.1 and OLE0.25 groups. Similar trends have been obtained for digestive enzyme activities such as α-amylase, protease and lipase. Morover, the expression of growth hormone (GH) and insulin-like growth factor I (IGF-I) was regulated by OLE supplemented by up to 0.25% in brain, liver, head kidney and muscle tissue. This study confirms that dietary OLE may enhance the growth performance of the common carp by activating the digestive enzyme activity in the intestine and increase the expression of genes (GH and IGF-I) related with growth in brain, liver, head kidneys and muscle tissue of common carp up to use 0.10% in diets.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/genética , Suplementos Dietéticos , Digestión , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Animales , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo
20.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334001

RESUMEN

According to many reports, phenolic compounds isolated from olive leaves have very good biological activities, especially antimicrobial. Presently, the resistance of microorganisms to antibiotics is greater than ever. Therefore, there are numerous recent papers about alternative solutions for inhibiting their influence on human health. Olive leaf is studied as an important source of antimicrobials with low cost and used in medicine. Numerous publications on involving green technologies for isolation of active compounds from olive leaves have appeared over the past few decades. The present review reports on current knowledge of the most isolated phenolic compounds from olive leaf extract as well as methods for their isolation and characterization. This paper uses recent research findings with a wide range of study models to describe the antimicrobial potential of phenolic compounds. It also describes the vast range of information about methods for determination of antimicrobial potential focusing on effects on different microbes. Additionally, it serves to highlight the role of olive leaf extract as an antioxidants and presents methods for determination of antioxidant potential. Furthermore, it provides an overview of presence of enzymes. The significance of olive leaves as industrial and agricultural waste is emphasized by means of explaining their availability, therapeutic and nutritional effects, and research conducted on this field.


Asunto(s)
Antioxidantes/farmacología , Olea/química , Fenoles/farmacología , Hojas de la Planta/química , Antiinfecciosos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA