Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2407498, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39487632

RESUMEN

In the era of artificial intelligence, developing advanced and intelligent photonic circuits has become essential. In this work, the fabrication of a smart organic photonic circuit (OPC), is illustrated which utilizes a Cornu-spiral-like waveguide (CSW) to produce discriminating optical pathways in the circuit. The mechanical flexibility of Schiff base, (E)-1-(((5-iodopyridin-2-yl)imino)methyl)naphthalen-2-ol (IPyIN) facilitates the fabrication of a first-of-its-kind, two-ring-based CSW via the atomic force microscopy cantilever tip-assisted mechanophotonics approach. The photonic studies suggest that the CSW structure routes optical signals in discriminating trajectories. To capitalize on the discriminatory properties of the CSW, two linear waveguides onto both rings of the CSW are integrated to create a smart OPC. This smart OPC can selectively route optical signals either partially or fully in the circuit, depending on the pathways determined by the CSW, thus enabling the circuit to switch ON or OFF. Such intelligent photonic circuits are essential for advancing smart technologies.

2.
Chemistry ; : e202402777, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327811

RESUMEN

Organic vapochromic materials which undergo a drastic change in their photophysical properties upon exposure to vapors or gases are attracting growing scientific attention because of their low price and wide range of possible applications. In this work, luminescence vapochromism of carbazole-pyridinium-based organic salts with a general structure of (CzPy)X (CzPy+=2,3-di(9H-carbazol-9-yl)pyridinium ion; X=Cl, Br or I) is reported. It was found that (CzPy)X compounds form J-aggregates, which rearranged back to monomeric form upon exposure to methanol, ethanol, acetone, and water vapors. In contrast, acetonitrile was found to promote the J-aggregation in (CzPy)X compounds by occupying the voids in their crystal lattice and pushing cations closer together. It was further demonstrated that the efficiency of J-aggregation in (CzPy)X compounds depends on the size of the anion, which was employed to realize dynamic luminescence vapochromism, with vapochromic response times ranging from a couple of minutes in (CzPy)Cl to more than an hour in (CzPy)I. In addition, (CzPy)X compounds exhibited high melting points of about 250 °C and excellent thermal stability. (CzPy)Cl and (CzPy)Br have also shown good photoluminescence quantum yields at room temperature in a solid state.

3.
Luminescence ; 39(1): e4585, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37635303

RESUMEN

In past decades, organic crystals have presented considerable potential in the field of optoelectronics due to their rich tunable physical and chemical properties and excellent optoelectronic characteristics. White-light emission, as a special application, has received widespread attention and has been applied in various fields, generating significant interest in the scientific community. By preparing white light-emitting organic crystals, a series of applications for future white-light sources can be realized. This article reviews the research progress on the molecular design and synthesis, preparation, and application of white light-emitting organic crystals in recent years. We hope that this review will help to understand and facilitate the development of white light-emitting organic crystals.


Asunto(s)
Luz
4.
Angew Chem Int Ed Engl ; : e202417459, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299918

RESUMEN

Flexible organic crystalline optical waveguides, which deliver input or self-emit light through various dynamic organic crystals, have attracted increasing attention in the past decade. However, the modulation of the waveguide output relies on chemical design and substituent modification, being time-consuming and laborious. Here we report an elastic organic crystal that displays long-distance light transduction up to 2.0 cm and an ultra-wide modulation of crystalline optical waveguides between red (645 nm) and near infrared (731 nm) in both the pristine and the elastically bent states based on a pre-designed self-absorption effect. The flexible organic crystalline optical waveguides can be precisely and reversibly reconfigured by controlling the irradiation point. In addition, deep-red amplified spontaneous emission (ASE) that is able to transduce through a 5.0 mm bent crystal with an ultra-low optical loss coefficient of 0.093 dB/mm has been attained. To the best of our knowledge, this is the first report of flexible organic ASE waveguides. The present study not only provides a simple yet effective strategy to remarkably modulate flexible organic crystalline optical waveguides but also demonstrates the superiority of lasing over normal emission as flexible optical communication elements.

5.
Angew Chem Int Ed Engl ; 62(40): e202309386, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37587321

RESUMEN

Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.

6.
Angew Chem Int Ed Engl ; 62(9): e202217329, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36575895

RESUMEN

One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s-1 ) and fast response time (≈2.70 s). The air-flow-induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair-like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics.

7.
Angew Chem Int Ed Engl ; 62(9): e202213229, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36494879

RESUMEN

Organic circularly polarized (CP) lasers have received increasing attention due to their future photoelectric applications. Here, we demonstrate a CP laser from a pure organic crystal-filled microcavity without any chiral molecules or chiral structures. Benefited from the giant anisotropy and excellent laser gain of organic crystals, optical Rashba-Dresselhaus spin-orbit coupling effect can be induced and is conductive to the CP laser in such microcavities. The maximum dissymmetry factor of the CP lasing with opposite helicities reachs 1.2. Our strategy may provide a new idea for the design of CP lasers towards future 3D laser displays, information storage and other fields.

8.
J Struct Biol ; 214(1): 107834, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077832

RESUMEN

Biogenic purine crystals function in vision as mirrors, multilayer reflectors and light scatterers. We investigated a light sensory organ in a primarily wingless insect, the jumping bristletail Lepismachilis rozsypali (Archaeognatha), an ancestral group. The visual system of this animal comprises two compound eyes, two lateral ocelli, and a median ocellus, which is located on the front of the head, pointing downwards to the ground surface. We determined that the median ocellus contains crystals of xanthine, and we obtained insights into their function. To date, xanthine biocrystals have only been found in the Archaeognatha. We performed a structural analysis, using reflection light microscopy, cryo-FIB-SEM, microCT and cryo-SEM. The xanthine crystals cover the bottom of a bowl-shaped volume in the median ocellus, in analogy to a tapetum, and reflect photons to light-sensitive receptors that are spread in the volume without apparent order or preferential orientation. We infer that the median ocellus operates as an irregular multifocal reflector, which is not capable of forming images. A possible function of this organ is to improve photon capture, and by so doing assess distances from the ground surface when jumping by determining changes in the intensity and contrast of the incident light.


Asunto(s)
Insectos , Animales , Morfogénesis , Xantina
9.
Small ; 18(41): e2204500, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084217

RESUMEN

Thermosalient crystals are molecular solids that exhibit explosive motions, such as sudden breaks and jumps, due to temperature-induced structural phase transitions between two polymorphs. Therefore, the development of molecular actuators with superior speed and power by deriving mechanical work from explosive motion is a fascinating concept. However, thermosalient transitions often cause crystal disintegration, which hampers repeatable phase transitions between the polymorphs. Here, it is reported that single crystal nano/microfibers of 1, 2, 4, 5-tetrabromobenzene (TBB), whose bulk crystals exhibit thermosalient behavior at ≈40 °C, can repeatedly transform between the low and high temperature polymorphs without disintegration. The structural tolerance against phase transition is attributed to the high flexibility of the nano/microfibers. It is observed that a structure consisting of a TBB fiber with both ends pinned to the substrate repeatedly buckles and straightens when the temperature is varied between 30 and 40 °C. It is demonstrated that buckling can lead to large displacement actuation as compared to a simple length change of the fiber. Moreover, the force generated by the buckling fiber is estimated and it is found that it can generate a force large enough to flick an object ≈104 times heavier than the fiber itself into the air against gravity.


Asunto(s)
Calor , Fenómenos Mecánicos , Movimiento (Física) , Transición de Fase , Temperatura
10.
Proc Natl Acad Sci U S A ; 116(48): 23954-23959, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712439

RESUMEN

Solution crystallization is a common technique to grow advanced, functional crystalline materials. Supersaturation, temperature, and solvent composition are known to influence the growth rates and thereby properties of crystalline materials; however, a satisfactory explanation of how these factors affect the activation barrier for growth rates has not been developed. We report here that these effects can be attributed to a previously unrecognized consequence of solvent fluctuations in the solvation shell of solute molecules attaching to the crystal surface. With increasing supersaturation, the average hydration number of the glutamic acid molecule decreases and can reach an asymptotic limit corresponding to the number of adsorption sites on the molecule. The hydration number of the glutamic acid molecule also fluctuates due to the rapid exchange of solvent in the solvation shell and local variation in the supersaturation. These rapid fluctuations allow quasi-equilibrium between fully solvated and partially desolvated states of molecules, which can be used to construct a double-well potential and thereby to identify the transition state and the required activation barrier. The partially desolvated molecules are not stable and can attach spontaneously to the crystal surface. The activation barrier versus hydration number follows the Evans-Polanyi relation. The predicted absolute growth rates of the α-glutamic acid crystal at lower supersaturations are in reasonable agreement with the experimental observations.

11.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682979

RESUMEN

The study of the formation of microstructures during the interaction of a protonated drug-like compound (API) with a maleic acid monoanion sheds light on the assembly processes in an aqueous solution at the molecular level. Molecular dynamics (MD) simulations coupled with density functional theory (DFT) calculations made it possible to find initial hydrogen bonding motifs during the assembly process, leading to the formation of heterodimers and trimers. The process of trimer formation [protonated API-maleic acid monoanion-protonated API] proceeds through the formation of three intermolecular H-bonds by the CO2- group of the maleic acid monoanion in both systems. The total enthalpy/energy of these H-bonds is more than 70 kJ/mol. Thus, the maleic acid monoanion plays a key role in the processes of association in aqueous solution, and the interaction of the maleic acid monoanion with API is more preferable than the interaction of API molecules with each other. DFT computations in the discrete continuum approximation reveal the spectral features of heterodimers and trimers, and the ATR-IR spectra confirmed these findings. MD simulations followed by DFT calculations made it possible to describe the initial stages of the formation of pharmaceutical cocrystals in an aqueous solution.


Asunto(s)
Simulación de Dinámica Molecular , Sales (Química) , Enlace de Hidrógeno , Maleatos/química , Soluciones , Agua/química
12.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432111

RESUMEN

Reflectance anisotropy spectroscopy (RAS) coupled to an electrochemical cell represents a powerful tool to correlate changes in the surface optical anisotropy to changes in the electrochemical currents related to electrochemical reactions. The high sensitivity of RAS in the range of the absorption bands of organic systems, such as porphyrins, allows us to directly correlate the variations of the optical anisotropy signal to modifications in the solid-state aggregation of the porphyrin molecules. By combining in situ RAS to electrochemical techniques, we studied the case of vacuum-deposited porphyrin nanocrystals, which have been recently observed dissolving through electrochemical oxidation in diluted sulfuric acid. Specifically, we could identify the first stages of the morphological modifications of the nanocrystals, which we could attribute to the single-electron transfers involved in the oxidation reaction; in this sense, the simultaneous variation of the optical anisotropy with the electron transfer acts as a precursor of the dissolution process of porphyrin nanocrystals.


Asunto(s)
Nanopartículas , Porfirinas , Porfirinas/química , Anisotropía , Solubilidad , Técnicas Electroquímicas
13.
Angew Chem Int Ed Engl ; 61(10): e202113988, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845806

RESUMEN

Organic crystals, although widely studied, have not been considered nascent candidate materials in engineering design. Here we summarize the mechanical properties of organic crystals that have been reported over the past three decades, and we establish a global mechanical property profile that can be used to predict and identify mechanically robust organic crystals. Being composed of light elements, organic crystals populate a narrow region in the mechanical property-density space between soft, disordered organic materials and stiff, ordered materials. Two subsets of extraordinarily stiff and hard organic crystalline materials were identified and rationalized by the normalized number density, strength, and directionality of their intermolecular interactions. We conclude that future lightweight, soft, all-organic components in devices should capitalize on the greatest asset of organic single crystals-namely, the combination of long-range structural order and softness.

14.
Angew Chem Int Ed Engl ; 61(52): e202212290, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326234

RESUMEN

Photomechanical molecular crystals are promising materials for photon-powered artificial actuators. To interpret the photomechanical responses, the spatiotemporal distribution of photoproducts in crystals could be an important role in addition to molecular structures, molecular packings, illumination conditions, crystal morphology, crystal size, and so on. In this study, we have found that single crystals of 2,5-distyrylpyrazine show a smooth single-crystal-to-single-crystal photomechanical expansion, and the photochemical reaction propagates from the edge to the center of the single crystal. We revealed that the surface effect (special reactivity at the crystal surface) in addition to the cooperative effect (the reaction is facilitated by neighboring molecules) is essential for the edge-to-center propagation of the photochemical reaction. Our results would provide a foundation for future studies of the photochemical reaction dynamics in photomechanical molecular crystals.

15.
Angew Chem Int Ed Engl ; 61(40): e202208768, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35856409

RESUMEN

The rapid development of information technology has resulted in a growing demand for low-dimensional photonic materials. Organic semiconductor materials play an important role in various photonic devices due to their adjustable physicochemical properties, while individual organic crystals do not exhibit the desired performance due to the limitations of their simple structure. Branched organic crystals with inherent multichannel characteristics based on π-conjugated molecules are favorable components in optoelectronics. However, the preparation of branched organic crystals still faces great challenges before they can be applied in integrated optoelectronic devices. In this Review, the development and representative examples of branched organic crystals in terms of molecular design, synthesis, and advanced applications are discussed. We also provide a summary and outlook for the direction of future research on branched organic crystals as excellent candidates in photonic integrated circuits.

16.
Angew Chem Int Ed Engl ; 61(2): e202114089, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761506

RESUMEN

Photomechanical molecular crystals that expand under illumination could potentially be used as photon-powered actuators. In this study, we find that the use of high-quality single crystals of 9-methylanthracene (9MA) leads to more homogeneous reaction kinetics than that previously seen for polycrystalline samples, presumably due to a lower concentration of defects. Furthermore, simultaneous observation of absorbance and shape changes in single crystals revealed that the dimensional change mirrors the reaction progress, resulting in a smooth expansion of 7 % along the c-axis that is linearly correlated with reaction progress. The same expansion dynamics are highly reproducible across different single crystal samples. Organic single crystals exhibit well-defined linear expansions during 100 % photoconversion, suggesting that this class of solid-state phase change material could be used for actuation.

17.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35604407

RESUMEN

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

18.
Angew Chem Int Ed Engl ; 61(31): e202202597, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502601

RESUMEN

Porous organic salts (POSs) are porous organic materials, in which various aromatic sulfonic acids and amines are regularly self-assembled by charge-assisted hydrogen bonding. POSs exhibit high solubility in highly polar solvents. Therefore, they are prepared via facile recrystallization and exhibit high recyclability. In this study, tetrahedral-structured tetrasulfonic acid and triphenylmethylamine (TPMA) were combined to construct POSs with rigid diamond networks called diamondoid porous organic salts (d-POSs). Furthermore, by introducing substituents (e.g., F, Cl, Br, or I) at the para-positions of benzene rings of TPMA, these substituents were exposed on the void surface of d-POSs, and their diamond networks were distorted. This induced the formation of a variety of void structures and environments in the d-POSs, which significantly affected their gas adsorption behavior. In particular, the d-POS from TPMA substituted by fluorine exhibited very high CO2 adsorption of 182 mL(STP) g-1 at 1 atm in all-organic porous materials.

19.
Small ; 17(14): e2006757, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33709615

RESUMEN

The construction of a practical crystalline molecular machine faces two challenges: to realize a collective molecular movement, and to amplify this movement into a precisely controlled mechanical response in real time and space. Thermosalient single crystals display cooperative molecular movements that are converted to strong macroscopic mechanical responses or shape deformations during temperature-induced structural phase transitions. However, these collective molecular movements are hard to control once initiated, and often feature thermal hystereses that are larger than 10 °C, which greatly hamper their practical applications. Here, it is demonstrated that the phase boundaries of the thermomechanical molecular crystal based on a fluorenone derivative 4-DBpFO can be used to finely control its structural phase transition. When this phase transition is triggered at two opposite crystal faces, it is accompanied by two parallel phase boundaries that can be temperature controlled to move forward, backward, or to halt, benefitting from the stored elastic energy between the parallel boundaries. Moreover, the thermal hysteresis is greatly decreased to 2-3 °C, which allows for circular heating/cooling cycles that can produce a continuous work output.

20.
Mol Pharm ; 18(5): 1905-1919, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33797925

RESUMEN

Amorphous solid dispersions (ASDs) are used to increase the solubility of oral medicines by kinetically stabilizing the more soluble amorphous phase of an active pharmaceutical ingredient with a suitable amorphous polymer. Low levels of a crystalline material in an ASD can negatively impact the desired dissolution properties of the drug. Characterization techniques such as powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) are often used to detect and measure any crystallinity within ASDs. These techniques are unable to detect or quantify very low levels because they have limits of detection typically in the order of 1-5%. Herein, an ASD of felodipine (FEL) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) prepared via a hot melt extrusion (HME) in a mass ratio of 30:70 was characterized using a range of techniques. No signs of residual crystallinity were found by pXRD, DSC, or FTIR. However, transmission electron microscopy (TEM) did identify two areas containing crystals at the edges of milled particles from a total of 55 examined. Both crystalline areas contained Cl Kα X-ray peaks when measured by energy-dispersive X-ray spectroscopy, confirming the presence of FEL (due to the presence of Cl atoms in FEL and not in PVP/VA). Further analysis was carried out by TEM using conical dark field (DF) imaging of a HME ASD of 50:50 FEL-PVP/VA to provide insights into the recrystallization process that occurs at the edges of particles during accelerated ageing conditions in an atmosphere of 75% relative humidity. Multiple metastable polymorphs of recrystallized FEL could be identified by selected area electron diffraction (SAED), predominately form II and the more stable form I. Conical DF imaging was also successful in spatially resolving and sizing crystals. This work highlights the potential for TEM-based techniques to improve the limit of detection of crystallinity in ASDs, while also providing insights into transformation pathways by identifying the location, size, and form of any crystallization that might occur on storage. This opens up the possibility of providing an enhanced understanding of a drug product's stability and performance.


Asunto(s)
Cristalización , Excipientes/química , Administración Oral , Disponibilidad Biológica , Química Farmacéutica , Composición de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Microscopía Electrónica de Transmisión , Polvos , Solubilidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA