Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 19(18): 2364-2369, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29799151

RESUMEN

Herein, we present experimental evidence that protic ionic liquids (PILs), derived from 1 : 1 liquid mixtures of the organic superbases 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carboxylic acids, form azeotropic mixtures with acid/base molar fractions different from 1 : 1. The ability of the carboxylic acids to form strong hydrogen bonds with the PIL ion pair leads to an azeotropic composition richer in the acid component. The results show that the azeotropic composition is ruled by the extent of acid-base equilibrium and the relative volatility of the neutral species in the PIL medium. The PILs show marked negative deviations from Raoult's Law with the stronger superbase (DBU) leading to an azeotropic composition closer to the equimolar 1 : 1 ratio.

2.
Adv Mater ; 35(22): e2300084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929089

RESUMEN

Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.

3.
ChemSusChem ; 7(4): 1170-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24616172

RESUMEN

The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC).


Asunto(s)
Líquidos Iónicos/química , Lignina/química , Madera/química , Betula/química , Dióxido de Carbono/química , Etanolamina/química , Dióxido de Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA