RESUMEN
The bamboo forest growth optimization (BFGO) algorithm combines the characteristics of the bamboo forest growth process with the optimization course of the algorithm. The algorithm performs well in dealing with optimization problems, but its exploitation ability is not outstanding. Therefore, a new heuristic algorithm named orthogonal learning quasi-affine transformation evolutionary bamboo forest growth optimization (OQBFGO) algorithm is proposed in this work. This algorithm combines the quasi-affine transformation evolution algorithm to expand the particle distribution range, a process of entropy increase that can significantly improve particle searchability. The algorithm also uses an orthogonal learning strategy to accurately aggregate particles from a chaotic state, which can be an entropy reduction process that can more accurately perform global development. OQBFGO algorithm, BFGO algorithm, quasi-affine transformation evolutionary bamboo growth optimization (QBFGO) algorithm, orthogonal learning bamboo growth optimization (OBFGO) algorithm, and three other mature algorithms are tested on the CEC2017 benchmark function. The experimental results show that the OQBFGO algorithm is superior to the above algorithms. Then, OQBFGO is used to solve the capacitated vehicle routing problem. The results show that OQBFGO can obtain better results than other algorithms.
RESUMEN
Bladder cancer (BC) diagnosis presents a critical challenge in biomedical research, necessitating accurate tumor classification from diverse datasets for effective treatment planning. This paper introduces a novel wrapper feature selection (FS) method that leverages a hybrid optimization algorithm combining Orthogonal Learning (OL) with a rime optimization algorithm (RIME), termed mRIME. The mRIME algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance. It also introduces mRIME-SVM, a novel hybrid model integrating modified mRIME for FS with Support Vector Machine (SVM) for classification. The mRIME algorithm is employed as an FS method and is also utilized to fine-tune the hyperparameters of it the It SVM, enhancing the overall classification accuracy. Specifically, mRIME navigates complex search spaces to optimize FS without compromising classifier performance. Evaluated on eight diverse BC datasets, mRIME-SVM outperforms popular metaheuristic algorithms, ensuring precise and reliable diagnostic outcomes. Moreover, the proposed mRIME was employed for tackling global optimization problems. It has been thoroughly assessed using the IEEE Congress on Evolutionary Computation 2022 (CEC'2022) test suite. Comparative analyzes with Gray wolf optimization (GWO), Whale optimization algorithm (WOA), Harris hawks optimization (HHO), Golden Jackal Optimization (GJO), Hunger Game optimization algorithm (HGS), Sinh Cosh Optimizer (SCHO), and the original RIME highlight mRIME's competitiveness and efficacy across diverse optimization tasks. Leveraging mRIME's success, mRIME-SVM achieves high classification accuracy on nine BC datasets, surpassing existing models. Results underscore mRIME's competitiveness and applicability across diverse optimization tasks, extending its utility to enhance BC classification. This study contributes to advancing BC diagnostics with a robust computational framework, promising broader applications in bioinformatics and AI-driven medical research.
RESUMEN
In this paper, a new method is designed to effectively determine the parameters of proton exchange membrane fuel cells (PEMFCs), i.e., ξ 1 , ξ 2 , ξ 3 , ξ 4 , R C , λ , and b . The fuel cells (FCs) involve multiple variable quantities with complex non-linear behaviours, demanding accurate modelling to ensure optimal operation. An accurate model of these FCs is essential to evaluate their performance accurately. Furthermore, the design of the FCs significantly impacts simulation studies, which are crucial for various technological applications. This study proposed an improved parameter estimation procedure for PEMFCs by using the GOOSE algorithm, which was inspired by the adaptive behaviours found in geese during their relaxing and foraging times. The orthogonal learning mechanism improves the performance of the original GOOSE algorithm. This FC model uses the root mean squared error as the objective function for optimizing the unknown parameters. In order to validate the proposed algorithm, a number of experiments using various datasets were conducted and compared the outcomes with different state-of-the-art algorithms. The outcomes indicate that the proposed GOOSE algorithm not only produced promising results but also exhibited superior performance in comparison to other similar algorithms. This approach demonstrates the ability of the GOOSE algorithm to simulate complex systems and enhances the robustness and adaptability of the simulation tool by integrating essential behaviours into the computational framework. The proposed strategy facilitates the development of more accurate and effective advancements in the utilization of FCs.
RESUMEN
Recently, swarm intelligence algorithms have received much attention because of their flexibility for solving complex problems in the real world. Recently, a new algorithm called the colony predation algorithm (CPA) has been proposed, taking inspiration from the predatory habits of groups in nature. However, CPA suffers from poor exploratory ability and cannot always escape solutions known as local optima. Therefore, to improve the global search capability of CPA, an improved variant (OLCPA) incorporating an orthogonal learning strategy is proposed in this paper. Then, considering the fact that the swarm intelligence algorithm can go beyond the local optimum and find the global optimum solution, a novel OLCPA-CNN model is proposed, which uses the OLCPA algorithm to tune the parameters of the convolutional neural network. To verify the performance of OLCPA, comparison experiments are designed to compare with other traditional metaheuristics and advanced algorithms on IEEE CEC 2017 benchmark functions. The experimental results show that OLCPA ranks first in performance compared to the other algorithms. Additionally, the OLCPA-CNN model achieves high accuracy rates of 97.7% and 97.8% in classifying the MIT-BIH Arrhythmia and European ST-T datasets.
RESUMEN
The Archimedes optimization algorithm (AOA) has attracted much attention for its few parameters and competitive optimization effects. However, all agents in the canonical AOA are treated in the same way, resulting in slow convergence and local optima. To solve these problems, an improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is to deal with individuals at different levels in different ways. The optimal individual is processed by an orthogonal learning mechanism based on refraction opposition to fully learn the information on all dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA outperforms AOA and other advanced competitors. The competitive optimization results achieved by HCAOA on four engineering design problems also demonstrate its ability to solve practical problems.