Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442239

RESUMEN

Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.


Asunto(s)
Hormona de Crecimiento Humana , Receptores de Prolactina , Humanos , Proteínas Portadoras/química , Línea Celular , Hormona de Crecimiento Humana/antagonistas & inhibidores , Hormona de Crecimiento Humana/química , Prolactina/química , Receptores de Prolactina/antagonistas & inhibidores , Receptores de Prolactina/química , Receptores de Somatotropina/química , Polietilenglicoles/química
2.
Chembiochem ; 25(3): e202300481, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009768

RESUMEN

Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.


Asunto(s)
Péptidos , Proteínas , Distribución Tisular , Proteínas/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
3.
Mol Pharm ; 21(9): 4430-4440, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39069891

RESUMEN

Nectin cell adhesion molecule 4 (Nectin-4) is overexpressed in various malignant tumors and has emerged as a promising target for tumor imaging. Bicyclic peptides, known for their conformational rigidity, metabolic stability, and membrane permeability, are ideal tracers for positron emission tomography (PET) imaging. In this study, we evaluated the feasibility of visualizing Nectin-4-positive tumors using radiolabeled bicyclic peptide derivatives and optimized the pharmacokinetics of radiotracers by introducing PEG chains of different lengths. Five PEGylated radiotracers radiolabeled with 68Ga3+ exhibited high radiochemical purity and stability. As the chain length increased, the Log D values decreased from -2.32 ± 0.13 to -2.50 ± 0.16, indicating a gradual increase in the hydrophilicity of the radiotracers. In vitro cell-binding assay results showed that the PEGylated bicyclic peptide exhibits nanomolar affinity, and blocking experiments confirmed the specific binding of the tracers to the Nectin-4 receptor. In vivo PET imaging and biodistribution studies in SW780 and 5637 xenograft mice showed that [68Ga]Ga-NOTA-PEG12-BP demonstrated optimal pharmacokinetics, characterized by rapid and good tumor uptake, faster background clearance, and improved tumor-to-tissue contrast. Finally, compared with 18F-FDG, PET imaging, in vivo blocking assays of [68Ga]Ga-NOTA-PEG12-BP and histological staining confirmed that specific tumor uptake was mediated by Nectin-4 receptors. The results indicated that [68Ga]Ga-NOTA-PEG12-BP was a promising PET radiotracer for Nectin-4 targeting, with applications for clinical translation.


Asunto(s)
Radioisótopos de Galio , Polietilenglicoles , Tomografía de Emisión de Positrones , Animales , Radioisótopos de Galio/farmacocinética , Radioisótopos de Galio/química , Ratones , Humanos , Tomografía de Emisión de Positrones/métodos , Polietilenglicoles/química , Distribución Tisular , Línea Celular Tumoral , Moléculas de Adhesión Celular/metabolismo , Ratones Desnudos , Radiofármacos/farmacocinética , Radiofármacos/química , Femenino , Péptidos/química , Péptidos/farmacocinética , Ratones Endogámicos BALB C , Nectinas
4.
Mol Pharm ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39411827

RESUMEN

Anticoagulant therapy is commonly used to prevent and treat arterial and venous blood clots in patients with cardiovascular disease, cerebrovascular disease, and cancer. Venous blood clots are the third leading cause of cardiovascular death following acute coronary artery disease and stroke. There is a significant need for effective anticoagulant therapy with minimal risk of bleeding. Variegin and its variants are a new type of antithrombin peptide that has shown promising results in preclinical studies. Variegin and its best variant, ultravariegin (UV), can more effectively inhibit blood clot formation while causing less bleeding than traditional medications such as heparin and bivalirudin. However, the short lifespan of UV remains a limitation for its use in clinical settings. PEGylation, a method of conjugating poly(ethylene glycol) (PEG) chains to peptides or drugs, may help improve the effectiveness of UV by extending its circulation time in the body. In this study, UV was PEGylated using maleimide-PEG5k and 10k. The impact of PEGylation on the antithrombin activity of UV was assessed in vitro and ex vivo in rat and rabbit plasma, showing minimal effects on the efficacy. In vivo studies in rats and rabbits revealed that PEGylated UV had a longer half-life and greater anticoagulant effects than unmodified UV did, especially when it was administered subcutaneously. PEGylation significantly extended the half-life of UV in rabbits, resulting in sustained anticoagulant effects for up to 4 days. This demonstrated that increasing the size of UV and shielding it with PEG could reduce clearance by the kidneys and prolong its circulation time. The improved half-life and antithrombin activity of PEGylated UV make it a more favorable choice for anticoagulant therapy.

5.
Bioorg Chem ; 147: 107312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599053

RESUMEN

A series of water-soluble PEGylated 1,2,4-triazoles 5-8 were successfully synthesized from methyl 5-(chloromethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1. All of the water-soluble PEGylated 1,2,4-triazoles were characterized by FT-IR and 1H NMR spectroscopy. The solubility, in vitro plasma stability, and anti-inflammatory activity were also determined and compared to original methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates. For SAR study, all PEGylated 1,2,4-triazoles 5-8 performed potential anti-inflammatory activity on LPS-induced RAW 264.7 cells (IC50 = 3.42-7.81 µM). Moreover, the western blot result showed PEGylated 1,2,4-triazole 7d performed 5.43 and 2.37 folds inhibitory activity over iNOS and COX-2 expressions. On the other hand, the cell viability study revealed PEGylated 1,2,4-triazoles 7 and 8 with PEG molecular weight more than 600 presented better cell safety (cell viability > 95 %). Through the solubility and in vitro plasma stability studies, PEGylated 1,2,4-triazoles 7a-d exhibited higher hydrophilicity and prolonged 2.01 folds of half-life in compound 7d. Furthermore, the in vivo anti-inflammatory and gastric safety results indicated PEGylated 1,2,4-triazole 7d more effectively decreased the inflammatory response in edema and COX-2 expression and exhibited higher gastric safety than Indomethacin. Following the in vitro and in vivo study results, PEGylated 1,2,4-triazole 7d possessed favorable solubility, plasma stability features, safety, and significant anti-inflammatory activity to become the potential water-soluble anti-inflammatory candidate.


Asunto(s)
Polietilenglicoles , Solubilidad , Triazoles , Agua , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Animales , Ratones , Agua/química , Polietilenglicoles/química , Relación Estructura-Actividad , Edema/tratamiento farmacológico , Edema/inducido químicamente , Ciclooxigenasa 2/metabolismo , Supervivencia Celular/efectos de los fármacos , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Estructura Molecular , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Ratas , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Masculino , Relación Dosis-Respuesta a Droga , Carragenina
6.
Biosci Biotechnol Biochem ; 88(7): 768-775, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38734885

RESUMEN

Polyethylene glycol modification (PEGylation) is a widely used strategy to improve the physicochemical properties of various macromolecules, especially protein drugs. However, its application in enhancing the performance of enzymes for molecular biology remains underexplored. This study explored the PEGylation of Bst DNA polymerase, determining optimal modification reaction conditions. In comparison to the unmodified wild-type counterpart, the modified Bst DNA polymerase exhibited significantly improved activity, thermal stability, and inhibitor tolerance during loop-mediated isothermal amplification. When applied for the detection of Salmonella in crude samples, the modified enzyme demonstrated a notably accelerated reaction rate. Therefore, PEGylation emerges as a viable strategy for refining DNA polymerases, helping in the development of novel molecular diagnostic reagents.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Estabilidad de Enzimas , Polietilenglicoles , Polietilenglicoles/química , Polietilenglicoles/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Temperatura , Salmonella/genética , Salmonella/enzimología , Salmonella/efectos de los fármacos , Técnicas de Amplificación de Ácido Nucleico/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
7.
Chem Biodivers ; 21(4): e202301767, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470176

RESUMEN

Several edible plants contain flavonoids, including myricetin (Myr), which perform a wide range of biological activities. Myr has antitumor properties against various tumor cells. In this study Myr-loaded PEGylated niosomes (Myr-PN) were prepared and their anti-cancer activities were evaluated in vitro. Myr-PNs were prepared as a tool for drug delivery to the tumor site. Myr-PN was characterized in terms of size, zeta potential, and functional groups using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (SEM). The Myr-PN size was 241 nm with a polydispersity index (PDI) of 0.20, and zeta potential -32.7±6.6 mV. Apoptotic properties of Myr-PN against normal and cancer cell lines were determined by flow cytometry and real-time quantitative PCR. Cancer cells showed higher cytotoxicity when treated with Myr-PN compared with normal cells, indicating that the synthesized nanoparticles pose no adverse effects. Apoptosis was induced in cells treated with 250 µg/mL of Myr-PN, in which 45.2 % of cells were arrested in subG1, suggesting that Myr-PN can induce apoptosis. In vitro, the synthesized Myr-PN demonstrated potent anticancer properties. Furthermore, more research should be conducted in vitro and in vivo to study the more details of Myr-PN anti-cancer effects.


Asunto(s)
Liposomas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Flavonoides/química , Polietilenglicoles
8.
Vet Dermatol ; 35(3): 263-272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111025

RESUMEN

BACKGROUND: Polyoxyethylene hydrogenated castor oil (HCO ethoxylates) is a nonionic surfactant used as an excipient for ointments and injections in human and veterinary drugs. Several polyethylene glycol (PEG) derivatives can be obtained depending on the number of moles of ethylene oxide (EO). HCO ethoxylates have the potential to cause anaphylactoid reactions. There is little published information about these types of reactions in dogs. OBJECTIVE: To determine the potential for HCO-ethoxylate-containing drugs to cause anaphylactoid reactions in dogs, employing intradermal testing (IDT) with various concentrations of HCO ethoxylates (HCO-25, -40, -60 and -80). ANIMALS: Four healthy male laboratory dogs. MATERIALS AND METHODS: We performed IDT with drugs containing HCO ethoxylates and HCO ethoxylates alone to determine threshold concentrations. The IDT scores and threshold concentrations were compared. Analysis of skin biopsies from IDT sites was used to measure the percentage of degranulated mast cells. The effect of histamine at IDT sites was investigated by pre-treatment with an antihistamine. RESULTS: All HCO-ethoxylate-containing drugs caused a wheal-and-flare reaction. The threshold concentrations (0.001% and 0.00001%) of each HCO-ethoxylate depended on the number of moles of EO (p < 0.05). Mast cell degranulation was enhanced by all HCO ethoxylates. The HCO-60-induced reaction was suppressed by an oral antihistamine. CONCLUSIONS AND CLINICAL RELEVANCE: The threshold concentration can serve as a consideration for developing safe new drug formulations and for clinical decision-making around using drugs containing PEG derivatives. IDT is useful to predict the risk of adverse effects. Antihistamines could demonstrate a prophylactic effect.


Asunto(s)
Anafilaxia , Aceite de Ricino , Enfermedades de los Perros , Animales , Perros , Aceite de Ricino/efectos adversos , Masculino , Anafilaxia/inducido químicamente , Anafilaxia/veterinaria , Enfermedades de los Perros/inducido químicamente , Polietilenglicoles/efectos adversos , Pruebas Intradérmicas/veterinaria , Excipientes/efectos adversos , Excipientes/química , Piel/efectos de los fármacos , Piel/patología
9.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673976

RESUMEN

Antagonist peptides (ANTs) of vasoactive intestinal polypeptide receptors (VIP-Rs) are shown to enhance T cell activation and proliferation in vitro, as well as improving T cell-dependent anti-tumor response in acute myeloid leukemia (AML) murine models. However, peptide therapeutics often suffer from poor metabolic stability and exhibit a short half-life/fast elimination in vivo. In this study, we describe efforts to enhance the drug properties of ANTs via chemical modifications. The lead antagonist (ANT308) is derivatized with the following modifications: N-terminus acetylation, peptide stapling, and PEGylation. Acetylated ANT308 exhibits diminished T cell activation in vitro, indicating that N-terminus conservation is critical for antagonist activity. The replacement of residues 13 and 17 with cysteine to accommodate a chemical staple results in diminished survival using the modified peptide to treat mice with AML. However, the incorporation of the constraint increases survival and reduces tumor burden relative to its unstapled counterpart. Notably, PEGylation has a significant positive effect, with fewer doses of PEGylated ANT308 needed to achieve comparable overall survival and tumor burden in leukemic mice dosed with the parenteral ANT308 peptide, suggesting that polyethylene glycol (PEG) incorporation enhances longevity, and thus the antagonist activity of ANT308.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de Péptido Intestinal Vasoactivo , Animales , Ratones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Humanos , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Línea Celular Tumoral
10.
Prep Biochem Biotechnol ; 54(4): 503-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37698175

RESUMEN

Thermostability is an important and desired feature of therapeutic proteins and is critical for the success or failure of protein drugs development. It can be increased by PEGylation-binding of poly(ethylene glycol) moieties-or glycosylation-post-translational modification to add glycans. Here, the thermostability and thermodynamic parameters of native, PEGylated, and glycosylated versions of the antileukemic enzyme crisantaspase were investigated. First-order kinetics was found to describe the irreversible deactivation process. Activation energy of the enzyme-catalyzed reaction (E*) was estimated for native, PEGylated, and glycosylated enzyme (10.2, 14.8, and 18.8 kJ mol-1 respectively). Half-life decreased progressively with increasing temperature, and longer half-life was observed for PEG-crisantaspase (87.74 min) at 50 °C compared to the native form (9.79 min). The activation energy of denaturation of PEG-crisantaspase (307.1 kJ mol-1) was higher than for crisantaspase (218.1 kJ mol-1) and Glyco-crisantaspase (120.0 kJ mol-1), which means that more energy is required to overcome the energy barrier of the unfolding process. According to our results, PEG-crisantaspase is more thermostable than its native form, while Glyco-crisantaspase is more thermosensitive.


Asunto(s)
Asparaginasa , Polietilenglicoles , Glicosilación , Termodinámica , Temperatura , Cinética , Estabilidad de Enzimas
11.
Curr Issues Mol Biol ; 45(10): 8112-8125, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37886955

RESUMEN

Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.

12.
Osteoarthritis Cartilage ; 31(2): 187-198, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36241136

RESUMEN

OBJECTIVES: Cartilage targeting cationic glycoprotein Avidin was PEGylated to synthesize a multi-arm Avidin (mAv) nano-construct with high drug loading content. Here we investigate mAv biodistribution and kinetics over a 7-day period following intra-articular (IA) administration in rat knee joints. METHODS: Labeled mAv was injected into healthy rat knees, and joint tissues (articular cartilage, menisci, ligaments, tendons, fat pad) were harvested following sacrifice at 6 h, 1, 4 and 7 days. Its IA biodistribution and retention were measured using fluorescence microscopy. Tissue localization was compared in young vs old rats by immunohistochemistry. mAv chondrotoxicity and immune response were evaluated to determine safe carrier dose limits. RESULTS: mAv penetrated through the full thickness of rat cartilage and other joint tissues within 6 h, remaining detectable within most joint tissues over 7 days. Intra-tissue uptake correlated strongly with tissue GAG concentration, confirming the dominant role of electrostatic interactions between positively charged mAv and the negatively charged aggrecan proteoglycans. mAv was uptaken by chondrocytes and also penetrated the osteocyte lacuno-canalicular system of peri-articular bone in both young and old rats. mAv did not cause cytotoxicity at concentrations up to 300 µM but elicited a dose dependent immunogenic response. CONCLUSIONS: mAv's ability to target a variety of joint tissues, chondrocytes, and peri-articular osteocytes without sequestration in synovial fluid makes it a versatile carrier for delivering a wide range of drugs for treating a broad class of musculoskeletal diseases. Drugs can be conjugated using simple aqueous based avidin-biotin reaction, supporting its clinical prospects.


Asunto(s)
Avidina , Cartílago Articular , Ratas , Animales , Avidina/metabolismo , Distribución Tisular , Sistemas de Liberación de Medicamentos , Cartílago Articular/metabolismo , Polietilenglicoles/metabolismo , Inyecciones Intraarticulares
13.
Chemistry ; 29(16): e202203524, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541269

RESUMEN

It was previously reported that D-amino acid-containing peptides exhibited the ability to resist enzymatic hydrolysis. This study investigated the influence of mini-PEGs modification on enzymatic hydrolysis ability of D-amino acid-containing peptides. The results showed that PEGylation promoted enzymatic hydrolysis of the D-amino acid-containing peptide, especially, the cleavage rate of the D-amino acid-containing peptide 6-w with PEG3 modification at the N-ends was up to 17 times higher in the presence of proteinase K (PROK) compared to those without PEG3 modification. Moreover, analysis of the enzymatic cleavage sites demonstrated a similar cleavage pattern of the PEGylated D-amino acid-containing peptide to that of the unmodified peptide. The computational simulations further showed that the enhanced enzymatic hydrolysis ability can be attributed to the strong interaction between PROK and the peptide after PEG3 modification and the resulting formation of a mature catalytic triad structure.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Endopeptidasa K/química , Péptidos/química , Hidrólisis , Digestión
14.
Biotechnol Bioeng ; 120(12): 3570-3584, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37707439

RESUMEN

In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (ß-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.


Asunto(s)
Glucuronidasa , Ácido Glicirrínico , Glucuronidasa/química , Ácido Glicirrínico/metabolismo , Hidrólisis , Catálisis , Maleimidas , Polietilenglicoles
15.
Mol Pharm ; 20(11): 5701-5713, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37823379

RESUMEN

The bicelle, a type of solid lipid nanoparticle, comprises phospholipids with varying alkyl chain lengths and possesses the ability to solubilize poorly water-soluble drugs. Bicelle preparation is complicated and time-consuming because conventional drug-loading methods in bicelles require multiple rounds of thermal cycling or co-grinding with drugs and lipids. In this study, we proposed a simple drug-loading method for bicelles that utilizes passive diffusion. Drug-unloaded bicelles were placed inside a dialysis device and incubated in a saturated solution of ketoconazole (KTZ), which is a model drug. KTZ was successfully loaded into bare bicelles over time with morphological changes, and the final encapsulated concentration was dependent on the lipid concentration of the bicelles. When polyethylene glycol (PEG) chains of two different lengths (PEG2K and 5K) were incorporated into bicelles, PEG2k and PEG5k bicelles mitigated the morphological changes and improved the encapsulation rate. This mitigation of morphological changes enhanced the encapsulated drug concentration. Specifically, PEG5k bicelles, which exhibited the greatest prevention of morphological changes, had a lower encapsulated concentration after 24 h than that of PEG2k bicelles, indicating that PEGylation with a longer PEG chain length improved the loading capacity but decreased the encapsulation rate owing to the presence of a hydration layer of PEG. Thus, PEG with a certain length is more suitable for passive loading. Moreover, loading factors, such as temperature and vehicles used in the encapsulation process, affected the encapsulation rate of the drug. Taken together, the passive loading method offers high throughput with minimal resources, making it a potentially valuable approach during early drug development phases.


Asunto(s)
Fosfolípidos , Agua , Difusión
16.
Bioorg Med Chem ; 78: 117149, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587552

RESUMEN

This study was aimed at developing a novel platform for tetravalent conjugation of 4-arm polyethylene glycol (PEG) with an antisense oligonucleotide (ASO). The ASO technology has several limitations, such as low cellular uptake, poor nuclease stability, and short half-life. PEG-conjugated ASOs may result in an improvement in the pharmacokinetic behavior of the drug. Moreover, PEGylation can reduce enzymatic degradation and renal excretion of the conjugates, thereby, increasing its blood stability and retention time. In this study, we successfully synthesized PEG-ASO conjugate consisting of 4-arm-PEG and four molecules of ASO (4-arm-PEG-tetra ASO). Its hybridization ability with complementary RNA, enzymatic stability, and in vitro gene silencing ability were evaluated. No significant difference in hybridization ability was observed between 4-arm-PEG-tetra ASO and the parent ASO. In addition, gene silencing activity of the 4-arm-PEG-tetra ASO was observed in vitro. However, the in vitro activity of the 4-arm-PEG-tetra ASO was slightly reduced as that of the parent ASO. Moreover, the 4-arm-PEG-tetra ASO showed appreciable stability in cellular extract, suggesting that it hybridizes with mRNA in its intact form, without being cleaved in the cell, and exhibits ASO activity.


Asunto(s)
Oligonucleótidos Antisentido , Polietilenglicoles , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos , ARN Mensajero/genética
17.
Curr Oncol Rep ; 25(2): 115-122, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585961

RESUMEN

PURPOSEOF REVIEW: The purpose of this review is to discuss the current understanding of the pegilodecakin (PEGylated interleukin 10) and its role in the inhibition of tumour growth and metastasis. This review also focuses on clinical data published to date that have evaluated the efficacy and safety of pegilodecakin. RECENT FINDINGS: Pegilodecakin has shown significant promise in preclinical models, notable for decreased tumour burden and fewer sites of metastatic disease across various malignancies. It has been most widely assessed in a phase I/Ib clinical trial against several solid tumours, leading to the phase II and III clinical trials containing pegilodecakin and its combination with other current treatments. However, the updated data have not shown higher efficacy in renal cell carcinoma, metastatic non-small cell lung cancer or pancreatic cancer, with respect to the controls, yet the adverse events presented more mixed results. Further investigation into combination therapies including pegilodecakin is ongoing. Pegilodecakin showed promise in preclinical and phase I clinical trials on its efficacy in several solid tumours, with expected regulation of IL-10 signalling pathway observed. However, the phase II and III trials did not justify its application as potential immunotherapy in selected cancers. Further evaluation of pegilodecakin's efficacy in other cancers, either as monotherapy or in combination with the current treatments, is worth investigating clinically, which warrants to better understand its potential clinical utility.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Renales , Neoplasias Pulmonares , Humanos , Interleucina-10/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia/métodos , Polietilenglicoles/uso terapéutico , Neoplasias Renales/tratamiento farmacológico
18.
Anal Bioanal Chem ; 415(11): 2081-2090, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36274111

RESUMEN

The development of synthetic particles that emulate real viruses in size, shape, and chemical composition is vital to the development of imprinted polymer-based sorbent materials (molecularly imprinted polymers, MIPs). In this study, we address surrogates for adenovirus type 5 (Adv 5) via the synthesis and subsequent modification of icosahedral gold nanoparticles (iAuNPs) decorated with the most abundant protein of the Adv 5 (i.e., hexon protein) at the surface. CTAB-capped iAuNPs with dimensions in the range of 40-90 nm were synthesized, and then CTAB was replaced by a variety of polyethylene glycols (PEGs) in order to introduce suitable functionalities serving as anchoring points for the attachment of the hexon protein. The latter was achieved by non-covalent linking of the protein to the iAuNP surface using a PEG without reactive termination (i.e., methoxy PEG thiol, mPEG-SH, Mn=800). Alternatively, covalent anchoring points were generated by modifying the iAuNPs with a bifunctional PEG (i.e., thiol PEG amine, SH-PEG-NH2) followed by the addition of glutaraldehyde. X-ray photoelectron spectroscopy (XPS) confirmed the formation of the anchoring points at the iAuNP surface. Next, the amino groups present in the amino acids of the hexon protein interacted with the glutaraldehyde. iAuNPs before and after PEGylation were characterized using dynamic light scattering (DLS), XPS, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis spectroscopy, confirming the CTAB-PEG exchange. Finally, the distinct red shift obtained in the UV-Vis spectra of the pegylated iAuNPs in the presence of the hexon protein, the increase in the hydrodynamic diameter, the change in the zeta potential, and the selective binding of the hexon-modified iAuNPs towards a hexon-imprinted polymer (HIP) confirmed success in both the covalent and non-covalent attachment at the iAuNP surface.


Asunto(s)
Oro , Nanopartículas del Metal , Adenoviridae , Cetrimonio , Glutaral , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Polímeros/química , Serogrupo , Compuestos de Sulfhidrilo/química
19.
Anal Bioanal Chem ; 415(18): 4233-4243, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36045175

RESUMEN

We present here an ionophore-based ion-selective optode (ISO) platform to detect potassium and sodium concentrations in serum through flow cytometry. The ion-selective microsensors were based on polyethylene glycol (PEG)-modified polystyrene (PS) microspheres (PEG-PS). Ratiometric response curves were observed using peak channel fluorescence intensities for K+ (10-6 M to 0.1 M) and Na+ (10-4 M to 0.2 M) with sufficient selectivity for clinical diagnosis. Due to the matrix effect, proteins such as albumin and immunoglobulin caused an obvious increase in response for serum sample determination. To solve this problem, 4-arm PEG chains were covalently attached onto the surface of PS microspheres through a two-step reaction, which improved the stability and combated pollution of microspheres. As a preliminary application, potassium and sodium concentrations in human serums were successfully determined by the PEG-PS microsensors through flow cytometry.


Asunto(s)
Polietilenglicoles , Potasio , Humanos , Microesferas , Citometría de Flujo , Ionóforos , Iones , Sodio
20.
Macromol Rapid Commun ; 44(24): e2300300, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37657944

RESUMEN

Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.


Asunto(s)
Bivalvos , Lisina , Animales , Adhesivos , Polímeros , Dihidroxifenilalanina/química , Acrilatos , Arginina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA