Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.782
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 1-15, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126416

RESUMEN

I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.


Asunto(s)
Selección de Profesión , Lupus Eritematoso Sistémico , Femenino , Humanos , Investigación Biomédica
2.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
3.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36708705

RESUMEN

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN , RNA-Seq , Bacterias/genética , Análisis de la Célula Individual
4.
Annu Rev Immunol ; 33: 715-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25861980

RESUMEN

Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Células del Estroma/inmunología , Células del Estroma/metabolismo , Animales , Comunicación Celular , Enfermedad Crónica , Humanos , Inflamación/patología , Organogénesis/inmunología , Fenotipo
5.
Cell ; 183(4): 860-874, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186528

RESUMEN

Persistent cancer cells are the discrete and usually undetected cells that survive cancer drug treatment and constitute a major cause of treatment failure. These cells are characterized by their slow proliferation, highly flexible energy consumption, adaptation to their microenvironment, and phenotypic plasticity. Mechanisms that underlie their persistence offer highly coveted and sought-after therapeutic targets, and include diverse epigenetic, transcriptional, and translational regulatory processes, as well as complex cell-cell interactions. Although the successful clinical targeting of persistent cancer cells remains to be realized, immense progress has been made in understanding their persistence, yielding promising preclinical results.


Asunto(s)
Neoplasias/patología , Animales , Supervivencia Celular , Metabolismo Energético , Transición Epitelial-Mesenquimal , Humanos , Mitocondrias/metabolismo , Neoplasias/terapia , Microambiente Tumoral
6.
Cell ; 182(4): 855-871.e23, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730808

RESUMEN

A T cell receptor (TCR) mediates antigen-induced signaling through its associated CD3ε, δ, γ, and ζ, but the contributions of different CD3 chains remain elusive. Using quantitative mass spectrometry, we simultaneously quantitated the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of all CD3 chains upon TCR stimulation. A subpopulation of CD3ε ITAMs was mono-phosphorylated, owing to Lck kinase selectivity, and specifically recruited the inhibitory Csk kinase to attenuate TCR signaling, suggesting that TCR is a self-restrained signaling machinery containing both activating and inhibitory motifs. Moreover, we found that incorporation of the CD3ε cytoplasmic domain into a second-generation chimeric antigen receptor (CAR) improved antitumor activity of CAR-T cells. Mechanistically, the Csk-recruiting ITAM of CD3ε reduced CAR-T cytokine production whereas the basic residue rich sequence (BRS) of CD3ε promoted CAR-T persistence via p85 recruitment. Collectively, CD3ε is a built-in multifunctional signal tuner, and increasing CD3 diversity represents a strategy to design next-generation CAR.


Asunto(s)
Complejo CD3/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Complejo CD3/química , Proteína Tirosina Quinasa CSK/metabolismo , Línea Celular , Citocinas/metabolismo , Humanos , Activación de Linfocitos/efectos de los fármacos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Ratones , Ratones Endogámicos NOD , Neoplasias/mortalidad , Neoplasias/patología , Neoplasias/terapia , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Supervivencia , Vanadatos/farmacología
7.
Immunity ; 56(11): 2584-2601.e7, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37922905

RESUMEN

Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/genética , VIH-1/fisiología , Latencia del Virus/genética , Linfocitos T CD4-Positivos , Factor de Transcripción AP-1 , Epigénesis Genética , Factor de Transcripción Ikaros/genética
8.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457610

RESUMEN

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Asunto(s)
Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Animales , Líquido Cefalorraquídeo/virología , Inflamación/inmunología , Tracto Gastrointestinal Inferior/virología , Ganglios Linfáticos/virología , Macaca mulatta , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
9.
Immunity ; 55(6): 1013-1031.e7, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35320704

RESUMEN

Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Células Clonales , Humanos , ARN , Viremia
10.
Immunity ; 53(2): 456-470.e6, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32758419

RESUMEN

Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.


Asunto(s)
Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Memoria Inmunológica/inmunología , Inmunoterapia Adoptiva , Células Jurkat , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mitocondrias/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/citología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32208170

RESUMEN

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Asunto(s)
Metilación de ADN/genética , Heterocromatina/genética , Metaboloma/genética , S-Adenosilmetionina/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citoplasma/genética , Citoplasma/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HCT116 , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metionina/genética , Ratones , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos
12.
Physiol Rev ; 100(3): 1349-1414, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031468

RESUMEN

The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Genitales Masculinos/virología , Virosis/virología , Humanos , Masculino , Virosis/patología
13.
Mol Cell ; 74(6): 1239-1249.e4, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31023582

RESUMEN

The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , N-Glicosil Hidrolasas/química , Regulación Alostérica , Secuencia de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Modelos Moleculares , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Especificidad por Sustrato
14.
Mol Cell ; 75(5): 1031-1042.e4, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327636

RESUMEN

Every bacterial population harbors a small subpopulation of so-called persisters that are transiently antibiotic tolerant. These persisters are associated with the recalcitrance of chronic infections because they can recolonize the host after antibiotic removal. Although several effectors have been described to induce persistence, persister cell awakening is poorly understood. We previously reported that the toxin HokB induces persistence via pore formation, resulting in membrane depolarization and ATP leakage. We now delineate mechanisms responsible for the awakening of HokB-induced persisters. We show that HokB dimerization by the oxidoreductase DsbA is essential for pore formation and peptide stability. Pores are disassembled via DsbC-mediated monomerization, which targets HokB for DegQ-mediated degradation. Finally, pore disassembly allows membrane repolarization by the electron transport chain, supporting cells to resume growth. These results provide a detailed view of both the formation and awakening of HokB-induced persister cells.


Asunto(s)
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciales de la Membrana/fisiología , Proteolisis , Serina Endopeptidasas/metabolismo , Toxinas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Serina Endopeptidasas/genética
15.
Proc Natl Acad Sci U S A ; 121(25): e2321418121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861606

RESUMEN

Intergenerational mobility captures the distance between the socioeconomic positions of parents versus their adult children. Researchers measure this distance in absolute and relative units, such as absolute dollars and relative ranks. Absolute and relative mobility often diverge. For example, absolute mobility can rise while relative mobility declines. How should scholars and policymakers understand this divergence? We conclude that they should understand it as follows: absolute mobility is less reflective than relative mobility of marginalized children's socioeconomic disadvantages. We base this conclusion on analyses of survey, administrative, and simulated data on income mobility in the contemporary United States. We analyze multiple points of difference in mobility, which facilitates the recognition of several asymmetries. First, high-income children's experiences weigh more heavily in absolute-mobility trends than low-income children's experiences, particularly when economic growth is positive. Second, this asymmetry is more characteristic of absolute- than relative-mobility trends. Third, absolute-mobility differences across demographic groups are more prone than relative-mobility differences to obscure marginalized groups' socioeconomic disadvantages. These asymmetries have policy implications: We caution that focusing on absolute mobility as a policy target can divert attention away from society's most disadvantaged children.


Asunto(s)
Renta , Humanos , Niño , Estados Unidos , Femenino , Masculino , Factores Socioeconómicos , Adulto , Pobreza , Adolescente , Movilidad Social
16.
Proc Natl Acad Sci U S A ; 121(17): e2322549121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630716

RESUMEN

We present an experiment on the immediate and lasting effects of reminder nudges in a complex environment. In the study, 1,542 subjects face a setting where, within a brief time frame, they have to pay attention to and perform multiple actions in a computer game. The experiment investigates i) the effect of reminders on the reminded actions and their spillovers on nonreminded actions; ii) spillovers between multiple nudges when the number of reminded actions is increased; and iii) intertemporal spillovers from having been exposed to reminders on actions after reminders are withdrawn. Our findings reveal, first, that reminders have a positive effect on the overall number of actions performed. It results from the positive direct effect on the reminded actions dominating the negative spillovers on nonreminded actions. These negative effects are notable in our setting, where reminders could potentially have positive spillovers by freezing attention or by indirectly prompting actions similar to the reminded ones. Second, we observe that reminder nudges are scalable. Increasing the number of reminded actions leads subjects to take more actions overall, albeit with diminishing returns and more pronounced negative spillover effects. Third, after reminders are withdrawn, the positive effect on reminded actions diminishes, while negative spillovers on nonreminded actions persist, thus rendering reminders ineffective in increasing the overall number of actions performed.

17.
Proc Natl Acad Sci U S A ; 121(3): e2314514121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190524

RESUMEN

Gram-negative bacterial bloodstream infections (GNB-BSI) are common and frequently lethal. Despite appropriate antibiotic treatment, relapse of GNB-BSI with the same bacterial strain is common and associated with poor clinical outcomes and high healthcare costs. The role of persister cells, which are sub-populations of bacteria that survive for prolonged periods in the presence of bactericidal antibiotics, in relapse of GNB-BSI is unclear. Using a cohort of patients with relapsed GNB-BSI, we aimed to determine how the pathogen evolves within the patient between the initial and subsequent episodes of GNB-BSI and how these changes impact persistence. Using Escherichia coli clinical bloodstream isolate pairs (initial and relapse isolates) from patients with relapsed GNB-BSI, we found that 4/11 (36%) of the relapse isolates displayed a significant increase in persisters cells relative to the initial bloodstream infection isolate. In the relapsed E. coli strain with the greatest increase in persisters (100-fold relative to initial isolate), we determined that the increase was due to a loss-of-function mutation in the ptsI gene encoding Enzyme I of the phosphoenolpyruvate phosphotransferase system. The ptsI mutant was equally virulent in a murine bacteremia infection model but exhibited 10-fold increased survival to antibiotic treatment. This work addresses the controversy regarding the clinical relevance of persister formation by providing compelling data that not only do high-persister mutations arise during bloodstream infection in humans but also that these mutants display increased survival to antibiotic challenge in vivo.


Asunto(s)
Bacteriemia , Sepsis , Humanos , Animales , Ratones , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Recurrencia
18.
Proc Natl Acad Sci U S A ; 121(35): e2400446121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150777

RESUMEN

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.


Asunto(s)
Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Infecciones Urinarias , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Animales , Humanos , Infecciones por Klebsiella/microbiología , Infecciones Urinarias/microbiología , Ratones , Carbapenémicos/farmacología , Masculino , Virulencia/genética , Antibacterianos/farmacología , Sistema Urinario/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
19.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059420

RESUMEN

The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.


Asunto(s)
Actinas , Pez Cebra , Animales , Humanos , Actinas/metabolismo , Vimentina/genética , Vimentina/metabolismo , Pez Cebra/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/fisiología , Proteínas Portadoras/metabolismo
20.
Immunity ; 47(4): 723-738.e5, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29031786

RESUMEN

Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Caliciviridae/inmunología , Diferenciación Celular/inmunología , Gastroenteritis/inmunología , Norovirus/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/virología , Diferenciación Celular/genética , Línea Celular , Microambiente Celular/genética , Microambiente Celular/inmunología , Gastroenteritis/genética , Gastroenteritis/virología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Ratones Endogámicos C57BL , Norovirus/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA