Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585087

RESUMEN

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Asunto(s)
Carcinogénesis/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animales , Humanos , Espectrometría de Masas/métodos , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Proteómica , Ratas , Ratas Sprague-Dawley , Pez Cebra
2.
Proteomics ; : e2400106, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091061

RESUMEN

Sequencing the tyrosine phosphoproteome using MS-based proteomics is challenging due to the low abundance of tyrosine phosphorylation in cells, a challenge compounded in scarce samples like primary cells or clinical samples. The broad-spectrum optimisation of selective triggering (BOOST) method was recently developed to increase phosphotyrosine sequencing in low protein input samples by leveraging tandem mass tags (TMT), phosphotyrosine enrichment, and a phosphotyrosine-loaded carrier channel. Here, we demonstrate the viability of BOOST in T cell receptor (TCR)-stimulated primary murine T cells by benchmarking the accuracy and precision of the BOOST method and discerning significant alterations in the phosphoproteome associated with receptor stimulation. Using 1 mg of protein input (about 20 million cells) and BOOST, we identify and precisely quantify more than 2000 unique pY sites compared to about 300 unique pY sites in non-BOOST control samples. We show that although replicate variation increases when using the BOOST method, BOOST does not jeopardise quantitative precision or the ability to determine statistical significance for peptides measured in triplicate. Many pY previously uncharacterised sites on important T cell signalling proteins are quantified using BOOST, and we identify new TCR responsive pY sites observable only with BOOST. Finally, we determine that the phase-spectrum deconvolution method on Orbitrap instruments can impair pY quantitation in BOOST experiments.

3.
J Biol Chem ; 299(9): 105098, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507023

RESUMEN

RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Proteína Activadora de GTPasa p120 , Humanos , Proteínas Activadoras de GTPasa/metabolismo , Proteína Activadora de GTPasa p120/química , Fosforilación , Proteínas Activadoras de ras GTPasa/química , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Dominios Homologos src , Calorimetría , Péptidos/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño
4.
Proteins ; 92(3): 329-342, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860993

RESUMEN

Thrombin is one of the key enzymes of the blood coagulation system and a promising target for the development of anticoagulants. One of the most specific natural thrombin inhibitors is hirudin, contained in the salivary glands of medicinal leeches. The medicinal use of recombinant hirudin is limited because of the lack of sulfation on Tyr63, resulting in a 10-fold decrease in activity compared to native (sulfated) hirudin. In the present work, a set of hirudin derivatives was tested for affinity to thrombin: phospho-Tyr63, Tyr63(carboxymethyl)Phe, and Tyr63Glu mutants, which mimic Tyr63 sulfation and Gln65Glu mutant and lysine-succinylated hirudin, which enhance the overall negative charge of hirudin, as well as sulfo-hirudin and desulfo-hirudin as references. Using steered molecular dynamics simulations with subsequent umbrella sampling, phospho-hirudin was shown to exhibit the highest affinity to thrombin among all hirudin analogs, including native sulfo-hirudin; succinylated hirudin was also prospective. Phospho-hirudin exhibited the highest antithrombotic activity in in vitro assay in human plasma. Taking into account the modern methods for obtaining phospho-hirudin and succinylated hirudin, they are prospective as anticoagulants in clinical practice.


Asunto(s)
Fibrinolíticos , Hirudinas , Humanos , Hirudinas/genética , Hirudinas/farmacología , Hirudinas/metabolismo , Fibrinolíticos/farmacología , Trombina , Fosforilación , Estudios Prospectivos , Anticoagulantes , Proteínas Recombinantes/genética , Tirosina/metabolismo
5.
Mol Cancer ; 23(1): 17, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229082

RESUMEN

Triple negative breast cancer (TNBC) is a heterogeneous group of tumors which lack estrogen receptor, progesterone receptor, and HER2 expression. Targeted therapies have limited success in treating TNBC, thus a strategy enabling effective targeted combinations is an unmet need. To tackle these challenges and discover individualized targeted combination therapies for TNBC, we integrated phosphoproteomic analysis of altered signaling networks with patient-specific signaling signature (PaSSS) analysis using an information-theoretic, thermodynamic-based approach. Using this method on a large number of TNBC patient-derived tumors (PDX), we were able to thoroughly characterize each PDX by computing a patient-specific set of unbalanced signaling processes and assigning a personalized therapy based on them. We discovered that each tumor has an average of two separate processes, and that, consistent with prior research, EGFR is a major core target in at least one of them in half of the tumors analyzed. However, anti-EGFR monotherapies were predicted to be ineffective, thus we developed personalized combination treatments based on PaSSS. These were predicted to induce anti-EGFR responses or to be used to develop an alternative therapy if EGFR was not present.In-vivo experimental validation of the predicted therapy showed that PaSSS predictions were more accurate than other therapies. Thus, we suggest that a detailed identification of molecular imbalances is necessary to tailor therapy for each TNBC. In summary, we propose a new strategy to design personalized therapy for TNBC using pY proteomics and PaSSS analysis. This method can be applied to different cancer types to improve response to the biomarker-based treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Transducción de Señal
6.
Chembiochem ; : e202400663, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271462

RESUMEN

Phosphotyrosine (pTyr) recognition coordinates the assembly of protein complexes, thus controlling key events of cell cycle, cell development and programmed cell death. Although many aspects of membrane receptor function and intracellular signal transduction have been deciphered in the last decades, the details of how phosphorylation alters protein-protein interaction and creates regulating switches of protein activity and localization often remains unclear. We developed a synthetic route to a protected phophotyrosine building block with isolated 13C-1H spins in the aromatic ring. The compound can be used for solid phase peptide synthesis (SPPS) and readily applied to study affinity, dynamics and interactions on an atomic level using NMR spectroscopy. As a first example, we prepared an isotopologue of a pTyr containing 12mer peptide (pY1021) as part of the platelet-derived growth factor to analyze the binding to the phospholipase C-γ (PLCγ-1) SH2 domain.

7.
Exp Cell Res ; 432(1): 113783, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726045

RESUMEN

Cytokinesis is the final step of the cell division in which cellular components are separated into two daughter cells. This process is regulated through the phosphorylation of different classes of proteins by serine/threonine (Ser/Thr) kinases such as Aurora B and Polo-like kinase 1 (PLK1). Conversely, the role of phosphorylation at tyrosine residues during cytokinesis has not been studied in detail yet. In this study, we performed a phosphotyrosine proteomic analysis of cells undergoing monopolar cytokinesis synchronized by using the Eg5 inhibitor (+)-S-trityl-l-cysteine (STLC) and the CDK1 inhibitor RO-3306. Phosphotyrosine proteomics gave 362 tyrosine-phosphorylated peptides. Western blot analysis of proteins revealed tyrosine phosphorylation in mitogen-activated protein kinase 14 (MAPK14), vimentin, ephrin type-A receptor 2 (EphA2), and myelin protein zero-like protein 1 (MPZL1) during monopolar cytokinesis. Additionally, we demonstrated that EphA2, a protein with unknown function during cytokinesis, is involved in cytokinesis. EphA2 knockdown accelerated epithelial cell transforming 2 (Ect2) knockdown-induced multinucleation, suggesting that EphA2 plays a role in cytokinesis in a particular situation. The list also included many proteins previously reported to play roles during cytokinesis. These results evidence that the identified phosphopeptides facilitate the identification of novel tyrosine phosphorylation signaling involved in regulating cytokinesis.


Asunto(s)
Citocinesis , Proteómica , Humanos , Citocinesis/fisiología , Fosfotirosina , Células HeLa , Fosforilación , Fosfoproteínas , Péptidos y Proteínas de Señalización Intracelular
8.
Adv Exp Med Biol ; 1460: 431-462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287861

RESUMEN

The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and ß-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.


Asunto(s)
Adiponectina , Resistencia a la Insulina , Insulina , Leptina , Obesidad , Humanos , Leptina/metabolismo , Leptina/sangre , Obesidad/metabolismo , Obesidad/sangre , Adiponectina/metabolismo , Adiponectina/sangre , Insulina/metabolismo , Insulina/sangre , Animales , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Transducción de Señal , Síndrome Metabólico/metabolismo , Síndrome Metabólico/sangre
9.
J Proteome Res ; 22(6): 1868-1880, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37097255

RESUMEN

Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.


Asunto(s)
Péptidos , Proteómica , Humanos , Fosfotirosina/metabolismo , Células HeLa , Proteómica/métodos , Reproducibilidad de los Resultados , Péptidos/química , Fosforilación , Fosfopéptidos/análisis , Proteoma/análisis
10.
J Biol Chem ; 298(11): 102555, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183831

RESUMEN

Inhibitors targeting Bruton's tyrosine kinase (BTK) have revolutionized the treatment for various B-cell malignancies but are limited by acquired resistance after prolonged treatment as a result of mutations in BTK. Here, by a combination of structural modeling, in vitro assays, and deep phospho-tyrosine proteomics, we demonstrated that four clinically observed BTK mutations-C481F, C481Y, C481R, and L528W-inactivated BTK kinase activity both in vitro and in diffused large B-cell lymphoma (DLBCL) cells. Paradoxically, we found that DLBCL cells harboring kinase-inactive BTK exhibited intact B cell receptor (BCR) signaling, unperturbed transcription, and optimal cellular growth. Moreover, we determined that DLBCL cells with kinase-inactive BTK remained addicted to BCR signaling and were thus sensitive to targeted BTK degradation by the proteolysis-targeting chimera. By performing parallel genome-wide CRISPR-Cas9 screening in DLBCL cells with WT or kinase-inactive BTK, we discovered that DLBCL cells with kinase-inactive BTK displayed increased dependence on Toll-like receptor 9 (TLR9) for their growth and/or survival. Our study demonstrates that the kinase activity of BTK is not essential for oncogenic BCR signaling and suggests that BTK's noncatalytic function is sufficient to sustain the survival of DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología
11.
J Biol Chem ; 298(9): 102340, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931120

RESUMEN

Epidermal growth factor (EGF) is one of the most well-characterized growth factors and plays a crucial role in cell proliferation and differentiation. Its receptor EGFR has been extensively explored as a therapeutic target against multiple types of cancers, such as lung cancer and glioblastoma. Recent studies have established a connection between deregulated EGF signaling and metabolic reprogramming, especially rewiring in aerobic glycolysis, which is also known as the Warburg effect and recognized as a hallmark in cancer. Pyruvate kinase M2 (PKM2) is a rate-limiting enzyme controlling the final step of glycolysis and serves as a major regulator of the Warburg effect. We previously showed that PKM2 T405/S406 O-GlcNAcylation, a critical mark important for PKM2 detetramerization and activity, was markedly upregulated by EGF. However, the mechanism by which EGF regulates PKM2 O-GlcNAcylation still remains uncharacterized. Here, we demonstrated that EGF promoted O-GlcNAc transferase (OGT) binding to PKM2 by stimulating OGT Y976 phosphorylation. As a consequence, we found PKM2 O-GlcNAcylation and detetramerization were upregulated, leading to a significant decrease in PKM2 activity. Moreover, distinct from PKM2, we observed that the association of additional phosphotyrosine-binding proteins with OGT was also enhanced when Y976 was phosphorylated. These proteins included STAT1, STAT3, STAT5, PKCδ, and p85, which are reported to be O-GlcNAcylated. Together, we show EGF-dependent Y976 phosphorylation is critical for OGT-PKM2 interaction and propose that this posttranslational modification might be important for substrate selection by OGT.


Asunto(s)
Factor de Crecimiento Epidérmico , N-Acetilglucosaminiltransferasas , Piruvato Quinasa , Tirosina , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Piruvato Quinasa/metabolismo , Factor de Transcripción STAT5/metabolismo , Tirosina/metabolismo
12.
J Biol Chem ; 298(12): 102679, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370849

RESUMEN

Yeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation. In this study, we investigate cellular effects of a Src-mediated phosphorylation site at Tyr179 on hYVH1. We observed that this phosphorylation event attenuates localization of hYVH1 to stress granules, enhances shuttling of hYVH1 to the nucleus, and promotes hYVH1 partitioning to the 60S ribosomal subunit. Quantitative proteomics reveal that Src coexpression with hYVH1 reduces formation of ribosomal species that represent stalled intermediates through the alteration of associating factors that mediate translational repression. Collectively, these results implicate hYVH1 as a novel Src substrate and provide the first demonstrated role of tyrosine phosphorylation regulating the activity of a YVH1 ortholog. Moreover, the ribosome proteome alterations point to a collaborative function of hYVH1 and Src in maintaining translational fitness.


Asunto(s)
Fosfatasas de Especificidad Dual , Subunidades Ribosómicas Grandes de Eucariotas , Proteínas de Saccharomyces cerevisiae , Humanos , Fosfatasas de Especificidad Dual/metabolismo , Fosforilación , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 298(4): 101804, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257746

RESUMEN

Previously, we reported that knockdown of Abl protein tyrosine kinase by shRNA or pharmacological inhibition suppresses particle assembly of J6/JFH1 strain-derived hepatitis C virus (HCV) in Huh-7.5 cells. However, the detailed mechanism by which Abl regulates HCV replication remained unclear. In this study, we established Abl-deficient (Abl-) cells through genome editing and compared HCV production between Abl- cells expressing WT or kinase-dead Abl and parental Huh-7.5 cells. Our findings revealed that Abl expression was not required from the stages of virus attachment and entry to viral gene expression; however, the kinase activity of Abl was necessary for the assembly of HCV particles. Reconstitution experiments using human embryonic kidney 293T cells revealed that phosphorylation of Tyr412 in the activation loop of Abl was enhanced by coexpression with the viral nonstructural protein 5A (NS5A) and was abrogated by the substitution of NS5A Tyr330 with Phe (Y330F), suggesting that NS5A functions as a substrate activator of Abl. Abl-NS5A association was also attenuated by the Y330F mutation of NS5A or the kinase-dead Abl, and Abl Tyr412 phosphorylation was not enhanced by NS5A bearing a mutation disabling homodimerization, although the association of Abl with NS5A was still observed. Taken together, these results demonstrate that Abl forms a phosphorylation-dependent complex with dimeric NS5A necessary for viral particle assembly, but that Abl is capable of complex formation with monomeric NS5A regardless of tyrosine phosphorylation. Our findings provide the foundation of a molecular basis for a new hepatitis C treatment strategy using Abl inhibitors.


Asunto(s)
Hepacivirus , Proteínas Oncogénicas v-abl , Técnicas de Silenciamiento del Gen , Células HEK293 , Hepacivirus/fisiología , Hepatitis C , Humanos , Proteínas Oncogénicas v-abl/genética , Proteínas Oncogénicas v-abl/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus/genética , Replicación Viral/genética
14.
Mol Cell Proteomics ; 20: 100104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34052394

RESUMEN

Utilizing a protein carrier in combination with isobaric labeling to "boost" the signal of other low-level samples in multiplexed analyses has emerged as an attractive strategy to enhance data quantity while minimizing protein input in mass spectrometry analyses. Recent applications of this approach include pMHC profiling and tyrosine phosphoproteomics, two applications that are often limited by large sample requirements. While including a protein carrier has been shown to increase the number of identifiable peptides in both applications, the impact of a protein carrier on quantitative accuracy remains to be thoroughly explored, particularly in relevant biological contexts where samples exhibit dynamic changes in abundance across peptides. Here, we describe two sets of analyses comparing MS2-based quantitation using a 20× protein carrier in pMHC analyses and a high (~100×) and low (~9×) protein carrier in pTyr analyses, using CDK4/6 inhibitors and EGF stimulation to drive dynamic changes in the immunopeptidome and phosphoproteome, respectively. In both applications, inclusion of a protein carrier resulted in an increased number of MHC peptide or phosphopeptide identifications, as expected. At the same time, quantitative accuracy was adversely affected by the presence of the protein carrier, altering interpretation of the underlying biological response to perturbation. Moreover, for tyrosine phosphoproteomics, the presence of high levels of protein carrier led to a large number of missing values for endogenous phosphopeptides, leading to fewer quantifiable peptides relative to the "no-boost" condition. These data highlight the unique limitations and future experimental considerations for both analysis types and provide a framework for assessing quantitative accuracy in protein carrier experiments moving forward.


Asunto(s)
Fosfopéptidos/metabolismo , Tirosina/metabolismo , Línea Celular Tumoral , Humanos , Fosforilación , Proteómica
15.
Biochem J ; 479(24): 2465-2475, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36416757

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) is a Receptor Tyrosine Kinase that mediates cell proliferation and differentiation events during development and maintenance of complex organisms. Formation of specific, ligand-dependent EGFR dimers is a key step in stimulating EGFR signaling, and crystal structures of active, dimeric forms of isolated EGFR extracellular regions and kinase domains have revealed much about how dimer interactions regulate EGFR activity. The nature and role of the transmembrane region in regulating EGFR activity remains less clear, however. Proposed roles for the transmembrane region range from nonspecific but energetically favorable interactions to specific transmembrane dimer conformations being associated with active, inactive, or activity-modulated states of EGFR. To investigate the role of specific transmembrane dimers in modulating EGFR activity we generated thirteen EGFR variants with altered transmembrane sequences designed to favor or disfavor specific types of transmembrane region interactions. We show using FRET microscopy that EGFR transmembrane regions have an intrinsic propensity to associate in mammalian cell membranes that is counteracted by the extracellular region. We show using cell-based assays that each of the EGFR transmembrane variants except the Neu variant, which results in constitutive receptor phosphorylation, is able to autophosphorylate and stimulate phosphorylation of downstream effectors Erk and Akt. Our results indicate that many transmembrane sequences, including polyleucine, are compatible with EGFR activity and provide no evidence for specific transmembrane dimers regulating EGFR function.


Asunto(s)
Receptores ErbB , Transducción de Señal , Animales , Fosforilación , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Membrana Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Mamíferos/metabolismo
16.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569303

RESUMEN

Janus tyrosine kinase 3 (JAK3) is primarily expressed in immune cells and is needed for signaling by the common gamma chain (γc) family of cytokines. Abnormal JAK3 signal transduction can manifest as hematological disorders, e.g., leukemia, severe combined immunodeficiency (SCID) and autoimmune disease states. While regulatory JAK3 phosphosites have been well studied, here a functional proteomics approach coupling a JAK3 autokinase assay to mass spectrometry revealed ten previously unreported autophosphorylation sites (Y105, Y190, Y238, Y399, Y633, Y637, Y738, Y762, Y824, and Y841). Of interest, Y841 was determined to be evolutionarily conserved across multiple species and JAK family members, suggesting a broader role for this residue. Phospho-substitution mutants confirmed that Y841 is also required for STAT5 tyrosine phosphorylation. The homologous JAK1 residue Y894 elicited a similar response to mutagenesis, indicating the shared importance for this site in JAK family members. Phospho-specific Y841-JAK3 antibodies recognized activated kinase from various T-cell lines and transforming JAK3 mutants. Computational biophysics analysis linked Y841 phosphorylation to enhanced JAK3 JH1 domain stability across pH environments, as well as to facilitated complementary electrostatic JH1 dimer formation. Interestingly, Y841 is not limited to tyrosine kinases, suggesting it represents a conserved ubiquitous enzymatic function that may hold therapeutic potential across multiple kinase families.


Asunto(s)
Factor de Transcripción STAT5 , Transducción de Señal , Fosforilación , Factor de Transcripción STAT5/genética , Janus Quinasa 1/genética , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo
17.
J Biol Chem ; 296: 100389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561442

RESUMEN

The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.


Asunto(s)
Cerebelo/anomalías , Síndrome de Down/genética , Enfermedad de Hirschsprung/genética , Mutación con Pérdida de Función , Malformaciones del Sistema Nervioso/genética , Proteínas Proto-Oncogénicas c-ret/genética , Animales , Cerebelo/metabolismo , Cerebelo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/metabolismo , Síndrome de Down/patología , Técnicas de Sustitución del Gen/métodos , Proteínas Hedgehog/metabolismo , Enfermedad de Hirschsprung/complicaciones , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Neuroglía/metabolismo , Neuroglía/patología , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología
18.
J Biol Chem ; 296: 100280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450227

RESUMEN

Protein tyrosine phosphorylation regulates the production of capsular polysaccharide, an essential virulence factor of the deadly pathogen Vibrio vulnificus. The process requires the protein tyrosine kinase Wzc and its cognate phosphatase Wzb, both of which are largely uncharacterized. Herein, we report the structures of Wzb of V. vulnificus (VvWzb) in free and ligand-bound forms. VvWzb belongs to the low-molecular-weight protein tyrosine phosphatase (LMWPTP) family. Interestingly, it contains an extra four-residue insertion in the W-loop, distinct from all known LMWPTPs. The W-loop of VvWzb protrudes from the protein body in the free structure, but undergoes significant conformational changes to fold toward the active site upon ligand binding. Deleting the four-residue insertion from the W-loop severely impaired the enzymatic activity of VvWzb, indicating its importance for optimal catalysis. However, mutating individual residues or even substituting the whole insertion with four alanine residues only modestly decreased the enzymatic activity, suggesting that the contribution of the insertion to catalysis is not determined by the sequence specificity. Furthermore, inserting the four residues into Escherichia coli Wzb at the corresponding position enhanced its activity as well, indicating that the four-residue insertion in the W-loop can act as a general activity enhancing element for other LMWPTPs. The novel W-loop type and phylogenetic analysis suggested that VvWzb and its homologs should be classified into a new group of LMWPTPs. Our study sheds new insight into the catalytic mechanism and structural diversity of the LMWPTP family and promotes the understanding of the protein tyrosine phosphorylation system in prokaryotes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Quinasas/genética , Vibrio vulnificus/genética , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Dominio Catalítico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Ligandos , Proteínas de la Membrana/química , Modelos Moleculares , Polímeros Impresos Molecularmente/química , Fosfoproteínas Fosfatasas/química , Filogenia , Proteínas Tirosina Fosfatasas/clasificación , Proteínas Tirosina Quinasas/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Vibrio vulnificus/química , Vibrio vulnificus/enzimología
19.
J Cell Sci ; 133(4)2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974115

RESUMEN

Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.


Asunto(s)
Podocitos , Tirosina , Análisis por Conglomerados , Endocitosis , Proteínas de la Membrana , Proteínas Oncogénicas/metabolismo , Fosforilación , Podocitos/metabolismo , Tirosina/metabolismo
20.
Mol Cell Proteomics ; 19(4): 730-743, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071147

RESUMEN

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.


Asunto(s)
Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Vanadatos/metabolismo , Humanos , Iones , Células Jurkat , Fosfopéptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA