RESUMEN
Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.
Asunto(s)
Antibacterianos , Benzopiranos , Indoles , Antibacterianos/farmacología , Antibacterianos/química , Benzopiranos/química , Benzopiranos/farmacología , Indoles/química , Micelas , Nitrocompuestos/química , Pirimidinonas/química , Pirimidinonas/farmacologíaRESUMEN
Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.
Asunto(s)
Luz , Receptores de Orexina , Orexinas , Pez Cebra , Receptores de Orexina/metabolismo , Receptores de Orexina/química , Animales , Orexinas/metabolismo , Humanos , Locomoción/efectos de los fármacos , Simulación de Dinámica Molecular , Larva/metabolismo , Larva/efectos de los fármacos , Células HEK293 , LigandosRESUMEN
SignificanceNatural photochromic minerals have been reported by geologists for decades. However, the understanding of the photochromism mechanism has a key question still unanswered: What in their structure gives rise to the photochromism's reversibility? By combining experimental and computational methods specifically developed to investigate this photochromism, this work provides the answer to this fundamental question. The specific crystal structure of these minerals allows an unusual motion of the sodium atoms stabilizing the electronic states associated to the colored forms. With a complete understanding of the photochromism mechanism in hand, it is now possible to design new families of stable and tunable photochromic inorganic materials-based devices.
RESUMEN
Protonation represents a fundamental chemical process with promising applications in the fields of energy, environment, and memory devices. Probing the protonation mechanism, however, presents a formidable challenge owing to the elusiveness of intercalated protons. In this work, we utilize the atomic and electronic structure changes associated with protonation to directly image the proton intercalation pathways in α-MoO3 induced by UV illumination. We reveal the anisotropic intercalation behavior which is initiated by photocatalyzed water dissociation preferentially at the (001) edges and then propagates along the c axis, transforming α-MoO3 into HxMoO3 to realize photochromism. This photochromic process can be reversed via heating in air, leading to anisotropic proton deintercalation, also preferentially along the c axis. The observed anisotropic behavior can be attributed to the intrinsically low energy barriers for both proton migration along the c axis and water dissociation/formation at (001) edges.
RESUMEN
The transfer and migration process of the photogenerated charge carriers in plasmonic metal/semiconductor heterostructures not only affects their photocatalytic performance but also triggers some captivating phenomena. Here, a reversible photochromic behavior is observed on the Au/CdS heterostructures when they are investigated as photocatalysts for hydrogen production. The photochromism takes place upon excitation of the CdS component, in which the photogenerated holes are rapidly consumed by ethanol, while the electrons are transferred and stored on the Au cores, resulting in the blue shift of their localized surface plasmon resonance. The colloidal solution can restore its initial color after pumping with air, and the photochromic behavior can be cycled five times without obvious degradation. The finding represents great progress toward the photochromic mechanism of metal/semiconductor heterostructures and also reveals the importance of understanding the dynamic process of the photogenerated charge carriers in these heterostructures.
RESUMEN
Organic photomechanical molecular crystals are promising candidates for photoactuators, which have potential applications as smart materials in various fields. However, it is still challenging to fabricate photomechanical molecular crystals with flexibility because most of the molecular crystals are brittle and the mechanism of flexible crystals remains controversial. Here, a plastically flexible α-cyanostilbene crystal has been synthesized that can undergo solid-state [2+2] cycloaddition reaction under violet or UV irradiation and exhibits excellent photomechanical bending properties. A hook-shaped crystal can lift 0.7 mg object upward by 1.5 cm, which proves its potential for application as photoactuators. When complex with the agarose polymer, the molecules will be in the form of macroscopic crystals, which can drive the composite films to exhibit excellent photomechanical bending performance. Upon irradiation with UV light, the composite film can quickly lift 18.0 mg object upward by 0.3 cm. The results of this work may facilitate the application of macroscale crystals as photoactuators.
RESUMEN
Herein, a type of light- and heat-driven flexible supramolecular polymer with reversibly long-lived phosphorescence and photochromism is constructed from acrylamide copolymers with 4-phenylpyridinium derivatives containing a cyano group (P-CN, P-oM, P-mM), sulfobutylether-ß-cyclodextrin (SBCD), and polyvinyl alcohol (PVA). Compared to their parent solid polymers, these flexible supramolecules based on the non-covalent cross-linking of copolymers, SBCD, and PVA efficiently boost the phosphorescence lifetimes (723.0 ms for P-CN, 623.0 ms for P-oM, 945.8 ms for P-mM) through electrostatic interaction and hydrogen bonds. The phosphorescence intensity/lifetime, showing excellent responsiveness to light and heat, sharply decreased after irradiation with a 275 nm flashlight or sunlight and gradually recovered through heating. This is accompanied by the occurrence and fading of visible photochromism, manifesting as dark green for P-CN and pink for P-oM and P-mM. These reversible photochromism and phosphorescence behaviors are mainly attributed to the generation and disappearance of organic radicals in the 4-phenylpyridinium derivatives with a cyano group, which can guide tunable luminescence and photochromism.
RESUMEN
A novel supramolecular photoactuator in the form of a thin film of centimetric size has been developed as an alternative to traditional liquid crystal elastomers (LCE) involving azobenzene (AZO) units or photochromic microcrystals. This thin film is produced through spin coating without the need for alignment or crosslinking. The photoactuator combines a photochromic dithienylethene (DTE) functionalized with ureidopyrimidinone (UPy) units, and a telechelic thermoplastic elastomer, also functionalized with UPy, allowing quadruple hydrogen bonding between the two components. Upon alternating ultraviolet (UV) and visible light exposure, the film exhibits reversible bending and color changes, studied using displacement and absorption tracking setups. For the first time, the photomechanical effect (PME) is quantitatively correlated with photochromism, showing that DTE units drive the movement under both UV (photocyclization) and visible (photoreversion) light. In situ illumination techniques reveal that the PME arises from photoinduced strain within 160 nm UPy-bonded DTE domains, which expand and contract by approximately 50% under UV and visible light, respectively. The semicrystalline nature of the elastomer and a robust supramolecular network connecting both components are critical in converting microscopic photostrain into macroscopic actuation.
RESUMEN
Photochromic diarylethene has attracted broad research interest in optical applications owing to its excellent fatigue resistance and unique bistability. Photoswitchable fluorescent diarylethene become a powerful molecular tool for fluorescence imaging recently. Herein, the recent progress on photoswitchable fluorescent diarylethenes in bioimaging is reviewed. We summarize summarized the structures and properties of diarylethene fluorescence probes, and emphatically introduces their applications in bioimaging as well as super-resolution imaging. Additionally, we highlight the current challenges in practical applications and provides the prospects of the future development directions of photoswitchable fluorescent diarylethene in the field of bioimaging. This comprehensive review aims to stimulate further research into higher performance photoswitchable fluorescent molecules and advance their progress in biological application.
RESUMEN
Styrylbenzazoles form a promising yet under-represented class of photoswitches that can perform a light-driven E-Z isomerization of the central alkene double bond without undergoing irreversible photocyclization, typical of the parent stilbene. In this work, we report the synthesis and photochemical study of 23 styrylbenzazole photoswitches. Their thermal stabilities, quantum yields, maximum absorption wavelengths and photostationary state (PSS) distributions can be tuned by changing the benzazole heterocycle and the substitution pattern on the aryl ring. In particular, we found that push-pull systems show large redshifts of the maximum absorption wavelengths and the highest quantum yields, whereas ortho-substituted styrylbenzazole photoswitches exhibit the most favorable PSS ratios. Taking advantage of both design principles, we produced 2,6-dimethyl-4-(dimethylamino)-styrylbenzothiazole, a thermally stable and efficient P-type photoswitch which displays negative photochromism upon irradiation with visible light up to 470â nm to obtain a near-quantitative isomerization with a very high quantum yield of 59 %. Furthermore, 4-hydroxystyrylbenzoxazole was demonstrated to be a pH-sensitive switch which exhibits a 100â nm redshift upon deprotonation. Ortho-methylation of its benzothiazole analogue improved the obtained PSS ratio in its deprotonated state from E : Z=53 : 47 to E : Z=18 : 82. We anticipate that this relatively unexplored class of photoswitches will form a valuable expansion of the current family of photoswitches.
RESUMEN
Emerging applications of photochromic compounds demand new molecular designs that can be inspired by some long-known yet currently forgotten classes of photoswitches. In the present review, we remind the community about Peri-AryloxyQuinones (PAQs) and their unique photoswitching behavior originally discovered more than 50â years ago. At the heart of this phenomenon is the light-induced migration of an aromatic moiety (arylotropy) in peri-aryloxy-substituted quinones resulting in ana-quinones. PAQs feature absorbance of both isomers in the visible spectral region, photochromism in the amorphous and crystalline state, and thermal stability of the photogenerated ana-isomer. Particularly noticeable is the high sensitivity of the ana-isomer towards nucleophiles in solution. In addition to the mechanism of molecular photochromism and the underlaying structure-switch relationships, we analyze potential applications and prospects of aryloxyquinones in optically switchable materials and devices. Due to their ability to efficiently photoswitch in the solid state, PAQs are indeed attractive candidates for such materials and devices, including electronics (optically controllable circuits, switches, transistors, memories, and displays), porous crystalline materials, crystalline actuators, photoactivated sensors, and many more. This review is intended to serve as a guide for researchers who wish to use photoswitchable PAQs in the development of new photocontrollable materials, devices, and processes.
RESUMEN
As a new molecular scaffold of photoswitchable fluorophore, we developed a photochromic diarylethene containing a betaine structure based on pyridinium N-enolate. A facile reaction of a pyridyl-substituted dithienylperfluorocyclopentene derivative with octafluorocyclopentene constructed the betaine structure. The introduction of the betaine moiety provided the diarylethene molecule with bathochromically shifted optical absorption and fluorescing ability, thus enabling the molecule to function as a visible-light-sensitive turn-off mode photoswitchable fluorophore. The molecule in the open-ring form emitted bright blueish green fluorescence. Upon irradiation with 405 nm light, the molecule underwent cyclization isomerization to form the closed-ring isomer and the fluorescence intensity significantly decreased. The turn-off mode fluorescence photoswitching was observed not only in solution but also in polymer films.
RESUMEN
Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figureâ 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]â 2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
RESUMEN
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques inâ situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Asunto(s)
Péptidos beta-Amiloides , Colorantes Fluorescentes , Pirenos , Colorantes Fluorescentes/química , Pirenos/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagen , Teoría Funcional de la Densidad , Isomerismo , Espectrometría de FluorescenciaRESUMEN
Photoswitches are molecules that can absorb light of specific wavelengths and undergo a reversible transformation between their trans and cis isomeric forms. In phenylazo photoswitches, it is common for the less stable cis (Z) isomer to convert back to the more stable trans (E) isomer either through photochemical or thermal means. In this research, we designed new derivatives of phenylazothiazole (PAT) photoswitches, PAT-Fn, which feature fluorine substituents on their phenyl component. These derivatives can reversibly isomerize under visible light exposure with the enrichment of E and Z isomers at photostationary state (PSS). Surprisingly, we observed an unconventional phenomenon when these PAT-Fn (nâ§2) photoswitches were in their cis isomeric state in the absence of light. Instead of the anticipated transformation from cis to trans isomer, these compounds converted to an oligomeric compound. Our detailed experimental investigation and theoretical calculations, indicated the crucial role of fluorine substituents and the distinctive geometric arrangement of the cis isomer in driving the unexpected oligomerization process originating from the cis isomeric state.
RESUMEN
It is always a challenge to achieve "off-on" luminescent switch by regulating non-covalent interactions. Herein, we report a unique strategy for constructing high performance "off-on" tunable luminescent materials utilizing a novel molecule (TFPA) consist of pyrene and cyanostilbene. The pristine crystal of TFPA is almost non-emissive. Upon grinding/UV irradiation, an obvious luminescence enhancement is observed. Theoretical and experimental results revealed the underlying mechanism of this intriguing "off-on" switching behavior. The non-emissive crystal consists of ordered H-aggregates, with adjacent two molecules stacked in an anti-parallel manner and no overlapped area in pyrene moieties. When external force is applied by grinding or internal force is introduced through the photoisomerization, the dimer structures are facilitated with shorter intermolecular distances and better overlapping of pyrene moieties. In addition, the "on" state can recover to "off" state under thermal annealing, showing good reversibility and applicability in intelligence material. The present results promote an in-depth insight between packing structure and photophysical property, and offer an effective strategy for the construction of luminescence "off-on" switching materials, toward the development of stimuli-responsive luminescent materials for anti-counterfeiting.
RESUMEN
Nucleosidic diarylethenes (DAEs) have evolved from an emerging class of photochromes into a well-established option for integrating photochromic functionalities into biological systems. However, a comprehensive understanding of how chemical structure influences their photochromic properties remains essential. While structural features, such as an inverse connection between the aryl residues and the ethene bridge, are well-documented for classical DAEs, their application to nucleosidic DAEs has been underexplored. In this study, we address this gap by developing three distinct types of inverse nucleosidic DAEs-semi-inverse thiophenes, semi-inverse uridines and inverse uridines. We successfully synthesized these compounds and conducted comprehensive analyses of their photostationary states, thermal stability, reversibility, and reaction quantum yields. Additionally, we conducted an in-depth comparison of their photochromic properties with those of their normal-type counterparts. Among the synthesized compounds, seven semi-inverse thiophenes exhibited the most promising characteristics. Notably, these compounds demonstrated excellent fatigue resistance, with up to 96 % retention of photochromic activity over 40 switching cycles, surpassing the performance of all comparable nucleosidic DAEs reported to date. These findings hold significant promise for future applications in various fields.
RESUMEN
Photoswitching of photoluminescence has sparked tremendous research interests for super-resolution imaging, high-security-level anti-counterfeiting, and other high-tech applications. However, the excitation of photoluminescence is usually ready to trigger the photoswitching process, making the photoluminescence readout unreliable. Herein, we report a new photoswitch by the marriage of spiropyran with platinum(II) coordination complex. Viable photoluminescence can be achieved upon excitation by 480â nm visible light while the photoswitching can be easily triggered by 365â nm UV light. The feasible photoswitching may be benefited from the formed liquid crystalline (LC) phase of the designed photoswitch as a crystalline spiropyran is normally unable to implement photoswitching. Compared to the counterparts, this LC photoswitch can show distinct and reliable apparent colors and emission colors before and after photoswitching, which may promise the utility in high-security-level anti-counterfeiting and other advanced information technologies.
RESUMEN
In this concept, we showcase the upsurge in the studies of dynamic ultralong room-temperature phosphorescence (RTP) materials containing inorganic and/or organic components as versatile photo-responsive platforms. The goal is to provide a comprehensive analysis of photo-controllable RTP, and meanwhile delve into the underlying RTP properties of various classes of photochromic materials including metal-organic complexes, organic-inorganic co-crystals, purely organic small molecules and organic polymers. In particular, the design principles governing the integration of the photochromic and RTP moieties within a single material system, and the tuning of dynamic RTP in response to light are emphasized. As such, this concept sheds light on the challenges and opportunities of using these tunable RTP materials for potential applications in optoelectronics, particularly highlighting their use of reversible information encryption, erasable light printing and rewritable smart paper.
RESUMEN
A multi-stimuli responsive tetraphenyl substituted tripehnylamine-based aggregation induced emissive (AIE) material coupled with spiropyran was prepared. Owing to the presence of AIE and photochromic moiety, the molecule exhibits emissive aggregates, photochromism, and acidochromism. The multiple stimuli sensitive behavior of the molecule was explored for anti-counterfeiting behavior on TLC plate and commercial banknotes. The fluorogenic and photogenic response under UV and visible light established the potential of the candidate as a new generation encryption material.