Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722494

RESUMEN

Plenoptic cameras have received a wide range of research interest because it can record the 4D plenoptic function or radiance including the radiation power and ray direction. One of its important applications is digital refocusing, which can obtain 2D images focused at different depths. To achieve digital refocusing in a wide range, a large depth of field (DOF) is needed, but there are fundamental optical limitations to this. In this paper, we proposed a plenoptic camera with an extended DOF by integrating a main lens, a tunable multi-focus liquid-crystal microlens array (TMF-LCMLA), and a complementary metal oxide semiconductor (CMOS) sensor together. The TMF-LCMLA was fabricated by traditional photolithography and standard microelectronic techniques, and its optical characteristics including interference patterns, focal lengths, and point spread functions (PSFs) were experimentally analyzed. Experiments demonstrated that the proposed plenoptic camera has a wider range of digital refocusing compared to the plenoptic camera based on a conventional liquid-crystal microlens array (LCMLA) with only one corresponding focal length at a certain voltage, which is equivalent to the extension of DOF. In addition, it also has a 2D/3D switchable function, which is not available with conventional plenoptic cameras.

2.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514430

RESUMEN

Microlens array (MLA) errors in plenoptic cameras can cause the confusion or mismatching of 4D spatio-angular information in the image space, significantly affecting the accuracy and efficiency of target reconstruction. In this paper, we present a high-accuracy correction method for light fields distorted by MLA errors. Subpixel feature points are extracted from the microlens subimages of a raw image to obtain correction matrices and perform registration of the corresponding subimages at a subpixel level. The proposed method is applied for correcting MLA errors of two different categories in light-field images, namely form errors and orientation errors. Experimental results show that the proposed method can rectify the geometric and intensity distortions of raw images accurately and improve the quality of light-field refocusing. Qualitative and quantitative comparisons between images before and after correction verify the performance of our method in terms of accuracy, stability, and adaptability.

3.
Sensors (Basel) ; 18(7)2018 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-29937502

RESUMEN

A plenoptic cameras is a sensor that records the 4D light-field distribution of target scenes. The surface errors of a microlens array (MLA) can cause the degradation and distortion of the raw image captured by a plenoptic camera, resulting in the confusion or loss of light-field information. To address this issue, we propose a method for the local rectification of distorted images using white light-field images. The method consists of microlens center calibration, geometric rectification, and grayscale rectification. The scope of its application to different sized errors and the rectification accuracy of three basic surface errors, including the overall accuracy and the local accuracy, are analyzed through simulation of imaging experiments. The rectified images have a significant improvement in quality, demonstrating the provision of precise light-field data for reconstruction of real objects.

4.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35208316

RESUMEN

In this paper, a prototyped plenoptic camera based on a key electrically tunable liquid-crystal (LC) device for all-in-focus polarimetric imaging is proposed. By using computer numerical control machining and 3D printing, the proposed imaging architecture can be integrated into a hand-held prototyped plenoptic camera so as to greatly improve the applicability for outdoor imaging measurements. Compared with previous square-period liquid-crystal microlens arrays (LCMLA), the utilized hexagonal-period LCMLA has remarkably increased the light utilization rate by ~15%. Experiments demonstrate that the proposed imaging approach can simultaneously realize both the plenoptic and polarimetric imaging without any macroscopic moving parts. With the depth-based rendering method, both the all-in-focus images and the all-in-focus degree of linear polarization (DoLP) images can be obtained efficiently. Due to the large depth-of-field advantage of plenoptic cameras, the proposed camera enables polarimetric imaging in a larger depth range than conventional 2D polarimetric cameras. Currently, the raw light field images with three polarization states including I0 and I60 and I120 can be captured by the proposed imaging architecture, with a switching time of several tens of milliseconds. Some local patterns which are selected as interested target features can be effectively suppressed or obviously enhanced by switching the polarization state mentioned. According to experiments, the visibility in scattering medium can also be apparently improved. It can be expected that the proposed polarimetric imaging approach will exhibit an excellent development potential.

5.
Med Phys ; 47(8): 3636-3646, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32445200

RESUMEN

PURPOSE: To demonstrate the feasibility of a three-plenoptic camera projection, scintillation-based dosimetry system for measuring three-dimensional (3D) dose distributions of static photon radiation fields. METHODS: Static x-ray photon beams were delivered to a cubic plastic scintillator volume embedded within acrylic blocks. For each beam, three orthogonal projections of the scintillating light emission were recorded using a multifocus plenoptic camera. Experimental 3D reconstructions of the light distribution were obtained using an iterative maximum likelihood-expectation maximization (ML-EM) algorithm. For this purpose, the elements of the system matrix representing the contribution of the scintillator volume voxels to the camera sensor pixels were calculated using optical design software. A reconstruction-specific correction was applied to light reconstructions to account for scintillating light imaged by the camera but not directly resulting from dose deposition. Cross beam profiles (CBPs) and percentage depth dose (PDD) curves were compared to treatment planning system data for square fields. Three-dimensional and 3D gamma analyses were performed for concave-shaped dose distributions and the Pearson correlation coefficient and reconstruction error were employed to assess the quality of the measured relative 3D dose distributions. RESULTS: A full and accurate model of the plenoptic camera-based scintillation dosimetry system was implemented using the light ray tracing capabilities of optical design software. With this model, light distributions were successfully reconstructed over a volume of 60 × 60 × 60 mm 3 at a resolution of 2 mm. For relative 3D measurements of square radiation fields of 2 × 2 cm 2 , 3 × 3 cm 2 and 4 × 4 cm 2 compared with treatment planning system reference distributions, the maximum root-mean-square error of the CBPs evaluated at two different depths was of 3.2%, 1.2%, and 1.1%, respectively; as for the corresponding linearly fitted PDDs of the square fields, the slopes of the reconstructed dose distributions overestimated those of the reference distributions by at most 0.2%/ cm. The 2D gamma passing rate with a criterion of 2%/2 mm for the concave-shaped photon field was of 61.6%, 66.1%, and 76.4% using one, two, and three plenoptic projections; the respective success rates become 77.1%, 87.5%, and 94.9% using a criterion of 3%/3 mm. The 3D correlation coefficient for the corresponding reconstructions was of 0.688, 0.905, and 0.976, respectively. CONCLUSIONS: Three-dimensional light distributions emitted from within a plastic scintillator volume were successfully recovered using optical design software to establish a complete tomographic model of a plenoptic camera-based prototype. The tomographic model can equivalently extend to dynamic dose delivery measurements, providing temporal resolution limited by the camera's exposure time. This feasibility study enables a simplified design-to-implementation process for volumetric scintillation dosimetry prototypes toward fully meeting the clinical needs of 3D dose measurements for static and dynamic delivery techniques.


Asunto(s)
Algoritmos , Radiometría , Fotones , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA