Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Methods ; 225: 20-27, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471600

RESUMEN

Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.


Asunto(s)
Cromatina , Nucleosomas , Humanos , Cromatina/genética , Cromatina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Nylons/química , Nylons/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Genómica/métodos
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022237

RESUMEN

Elongating RNA polymerase II (Pol II) can be paused or arrested by a variety of obstacles. These obstacles include DNA lesions, DNA-binding proteins, and small molecules. Hairpin pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA in a sequence-specific manner and induce strong transcriptional arrest. Remarkably, this Py-Im-induced Pol II transcriptional arrest is persistent and cannot be rescued by transcription factor TFIIS. In contrast, TFIIS can effectively rescue the transcriptional arrest induced by a nucleosome barrier. The structural basis of Py-Im-induced transcriptional arrest and why TFIIS cannot rescue this arrest remain elusive. Here we determined the X-ray crystal structures of four distinct Pol II elongation complexes (Pol II ECs) in complex with hairpin Py-Im polyamides as well as of the hairpin Py-Im polyamides-dsDNA complex. We observed that the Py-Im oligomer directly interacts with RNA Pol II residues, introduces compression of the downstream DNA duplex, prevents Pol II forward translocation, and induces Pol II backtracking. These results, together with biochemical studies, provide structural insight into the molecular mechanism by which Py-Im blocks transcription. Our structural study reveals why TFIIS fails to promote Pol II bypass of Py-Im-induced transcriptional arrest.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , ARN Polimerasa II/metabolismo , Transcripción Genética , Secuencia de Bases , Imidazoles/química , Modelos Moleculares , Pirroles/química , Factores de Elongación Transcripcional/metabolismo
3.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847451

RESUMEN

Nanofiltration membranes with both high water permeance and selectivity are perpetually studied because of their applications in water purification. However, these two critical attributes are considered to be mutually exclusive. Here, we introduce a polar solvent, dichloromethane, in place of the apolar hexane used for decades as the organic phase for membrane interfacial polymerization synthesis to solve this dilemma. When a polar solvent as the organic phase is combined with a solvent-resistant aramid nanofibrous hydrogel film as the water phase, monomer enrichment in the reaction zone leads to a polyamide nanofiltration membrane with densely distributed nanobubble features, enhanced nanoporosity, and a loosened backbone. Benefiting from these structural features, the resulting membrane exhibits superior properties with a combination of high water permeance (52.7 L m-2 h-1 bar-1) and selectivity (water/Na2SO4, 36 bar-1; NaCl/Na2SO4, 357 bar-1), outperforming traditional nanofiltration membranes. We envision that this novel technology involving polar solvent systems and the water phase of nanofibrous hydrogel would provide new opportunities for membrane development for environmental engineering.

4.
Small ; 20(7): e2306031, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798601

RESUMEN

In this study, a nematic phase structure is incorporated into polybenzoxazine to increase its thermal conductivity. A simple route for the synthesis of a thermally conductive polybenzoxazine containing liquid crystalline (LC) structure by grafting oligomeric p-sulfophenylene-terephthalamide (PSTA) is offered. Benzoxazine monomer of pHBA-da is synthesized via Mannich reaction of p-hydroxy benzoic acid, p-formaldehyde, and dodecyl amine. After ring-opening polymerization, the oligomer benzoxazine of OBZ─COOH is obtained. The OBZ─COOH/PSTA mixture is prepared by mixing PSTA with OBZ─COOH. Afterward, the grafted copolymer is named OBZ─PSTA copolymer. The liquid crystalline behavior of OBZ─COOH/PSTA is studied by polarized optical microscopy and small angle X-ray scattering analysis. The results show that the OBZ─PSTA forms the LC structure during isothermal and non-isothermal curing. The LC structure displays a floral textured nematic phase. The phase formation is induced by an amidation reaction. Due to the grafts of LC PSTA, the thermal conductivity of OBZ─PSTA is 0.296 W m-1 K-1 , which is 26% greater than OBZ─COOH. The glass transition temperature (Tg ) of OBZ─PSTA is 241 °C. The 5% (Td5 ) and 10% weight loss temperatures (Td10 ) of OBZ─PSTA are 346 and 362 °C, respectively.

5.
Small ; 20(29): e2310092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38377281

RESUMEN

Supported ionic liquid membranes (SILMs), owing to their capacities in harnessing physicochemical properties of ionic liquid for exceptional CO2 solubility, have emerged as a promising platform for CO2 extraction. Despite great achievements, existing SILMs suffer from poor structural and performance stability under high-pressure or long-term operations, significantly limiting their applications. Herein, a one-step and in situ interfacial polymerization strategy is proposed to elaborate a thin, mechanically-robust, and highly-permeable polyamide armor on the SILMs to effectively protect ionic liquid within porous supports, allowing for intensifying the overall stability of SILMs without compromising CO2 separation performance. The armored SILMs have a profound increase of breakthrough pressure by 105% compared to conventional counterparts without armor, and display high and stable operating pressure exceeding that of most SILMs previously reported. It is further demonstrated that the armored SILMs exhibit ultrahigh ideal CO2/N2 selectivity of about 200 and excellent CO2 permeation of 78 barrers upon over 150 h operation, as opposed to the full failure of CO2 separation performance within 36 h using conventional SILMs. The design concept of armor provides a flexible and additional dimension in developing high-performance and durable SILMs, pushing the practical application of ionic liquids in separation processes.

6.
Appl Environ Microbiol ; : e0093324, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953372

RESUMEN

Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE: SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.

7.
Environ Sci Technol ; 58(25): 10969-10978, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860863

RESUMEN

Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at a current density of 10 mA cm-2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.


Asunto(s)
Electrólisis , Transporte Iónico , Membranas Artificiales , Agua/química
8.
Environ Sci Technol ; 58(13): 5878-5888, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498471

RESUMEN

Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Log D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.


Asunto(s)
Nylons , Purificación del Agua , Ósmosis , Purificación del Agua/métodos , Membranas Artificiales , Filtración
9.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451543

RESUMEN

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Asunto(s)
Cloruros , Nylons , Cloruros/química , Nylons/química , Membranas Artificiales , Solventes , Agua
10.
Environ Sci Technol ; 58(1): 391-399, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147515

RESUMEN

Low-cost polyamide thin-film composite membranes are being explored as alternatives to expensive cation exchange membranes for seawater electrolysis. However, transport of chloride from seawater to the anode chamber must be reduced to minimize the production of chlorine gas. A double-polyamide composite structure was created that reduced the level of chloride transport. Adding five polyamide layers on the back of a conventional polyamide composite membrane reduced the chloride ion transport by 53% and did not increase the applied voltage. Decreased chloride permeation was attributed to enhanced electrostatic and steric repulsion created by the new polyamide layers. Charge was balanced through increased sodium ion transport (52%) from the anolyte to the catholyte rather than through a change in the transport of protons and hydroxides. As a result, the Nernstian loss arising from the pH difference between the anolyte and catholyte remained relatively constant during electrolysis despite membrane modifications. This lack of a change in pH showed that transport of protons and hydroxides during electrolysis was independent of salt ion transport. Therefore, only sodium ion transport could compensate for the reduction of chloride flux to maintain the set current. Overall, these results prove the feasibility of using a double-polyamide structure to control chloride permeation during seawater electrolysis without sacrificing energy consumption.


Asunto(s)
Cloruros , Nylons , Nylons/química , Protones , Electrólisis , Agua de Mar/química , Hidróxidos , Sodio , Membranas Artificiales
11.
J Pharmacol Sci ; 154(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081679

RESUMEN

PURPOSE: The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-ß1. METHODS: We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-ß1 in human dermal fibroblasts (HDFs). FINDINGS: Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-ß1. CONCLUSION: The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-ß, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.


Asunto(s)
Nylons , Factor de Crecimiento Transformador beta1 , Humanos , Nylons/química , Nylons/farmacología , Factor de Crecimiento de Hepatocito , Factor de Crecimiento Transformador beta/genética , Pirroles/farmacología , Pirroles/química , Imidazoles/farmacología , Imidazoles/química
12.
Macromol Rapid Commun ; : e2400302, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877645

RESUMEN

Polyamide 6 (PA6) fiber has the advantages of high strength and good wear resistance. However, it is still challenging to effectively load inorganic antibacterial agents into polymer substrates without antimicrobial activity. In this work, graphene oxide is used as a carrier, which is modified with an aminosilane coupling agent (AEAPTMS) to enhance the compatibility and antimicrobial properties of the inorganic material, as well as to improve its thermal stability in a high-temperature melting environment. Cuprous oxide-loaded aminated grapheme (Cu2O-GO-NH2) is constructed by in situ growth method, and further PA6/Cu2O-GO-NH2 fibers are prepared by in situ polymerization. The composite fiber has excellent washing resistance. After 50 times of washing, its bactericidal rates against Bacillus subtilis and Escherichia coli are 98.85% and 99.99%, respectively. In addition, the enhanced compatibility of Cu2O-GO-NH2 with the PA6 matrix improves the orientation and crystallinity of the composite fibers. Compared with PA6/Cu2O-GO fibers, the fracture strength of PA6/Cu2O-GO-NH2 fibers increases from 3.0 to 4.2 cN/dtex when the addition of Cu2O-GO-NH2 is 0.2 wt%. Chemical modification and in situ concepts help to improve the compatibility of inorganic antimicrobial agents with organic polymers, which can be applied to the development of medical textiles.

13.
Macromol Rapid Commun ; : e2400228, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837476

RESUMEN

To enhance the low-temperature toughness and resistance of the engineering plastic polyamide PA12, this study introduces novel PA12/MVQ@POE-g-MAH ternary composites using a two-step process and dynamic curing. Analytical results indicate that incorporating MVQ@POE-g-MAH into the PA12 matrix markedly enhances its toughness and heat resistance. As the MVQ@POE-g-MAH content increases, the elongation at break of PA12 composites significantly expands from 52.83% to 204.69%, and the notch impact strength escalates from 8.69 to 74.34 kJ m-2. In addition, the brittleness temperature of PA12 decreases from -59.5 to -67.0 °C. Experimental findings confirm that POE-g-MAH is dispersed at the interface between MVQ and PA12, creating an encapsulated structure of MVQ@POE-g-MAH. This enhancement significantly broadens the potential applications of PA12 by improving its toughness, and resistance to both low and high temperatures, as well as impact endurance.

14.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37903330

RESUMEN

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Asunto(s)
Monoterpenos Bicíclicos , Lactamas , beta-Lactamas , Lactamas/química , Nylons/química , Peso Molecular , Polímeros/química , Bosques , Polimerizacion
15.
Environ Res ; 248: 118296, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280525

RESUMEN

This investigation assesses the embodied energy and carbon footprint in the manufacture of pavers using varying proportions of recycled Construction and Demolition Waste (CDW). Additionally, Thin Film Composite Polyamide fiber (TFC PA), extracted from end-of-life Reverse Osmosis (RO) membranes, is introduced as an additive to enhance the concrete's strength. Machine learning techniques, namely Artificial Neural Network (ANN), Support Vector Regression (SVR), and Response Surface Methodology (RSM), are employed to predict the mechanical properties of pavers. The study focuses on examining the energy required and embodied carbon in various mix proportions, as well as the mechanical properties-specifically compressive strength and split tensile strength of concrete with different CDW and TFC PA proportions. Findings reveal that the optimal percentage of TFC PA is 3 % for all CDW replacement proportions, resulting in low carbon content both in terms of energy and embodiment and in mechanical behavior. The implementation of ANN and SVR is conducted in MATLAB, while a Design Expert is employed to generate the experimental design for RSM. The RSM regression model demonstrates a robust correlation between variables and observed outcomes, with optimal p-values, R2 values, and f-values. The ANN model successfully captures the variability in the data. Additionally, the findings indicate a consistent superiority of the Support Vector Regression (SVR) model over both Artificial Neural Network (ANN) and Response Surface Model (RSM) models when considering diverse performance metrics such as residuals and correlation coefficients.


Asunto(s)
Carbono , Materiales de Construcción , Residuos Industriales/análisis , Reciclaje/métodos , Filtración
16.
BMC Urol ; 24(1): 106, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745203

RESUMEN

BACKGROUND: Microplastics are ubiquitous, widespread environmental pollutants with unavoidable human exposure. Herein, it was aimed to investigate the presence of microplastics in prostate tissue. METHODS: Prostate tissues from 12 patients who underwent Trans Urethral Resection of the Prostate (TUR-P) were analyzed to investigate the presence of microplastics. Initially, the prostate tissues were analyzed for microplastic particles using a light microscope after extraction. Subsequently, the chemical composition of the particles found in the prostate tissues was characterized using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectrophotometry. RESULTS: Microplastic particles of various types were detected in 6 out of 12 patients. All detected plastic particles in this study were microplastics, with sizes below 26 µm in size. These microplastics exhibited different shapes as pellets, spheres or fibers. Overall, among the 12 analyzed prostate tissue samples, four different types of plastic were identified in six samples. The most common type of microplastic detected was Polyamide (Nylon 6), found in samples from three patients. Other detected types, Polypropylene, Polyacrylic Acid and Poly (dimethylsiloxane) were each determined in samples from one patient. CONCLUSIONS: This is the first study to demonstrate the presence of microplastics in prostate tissue, serving as an exploratory investigation, which can trigger further research to validate the results in a larger patient cohort.


Asunto(s)
Microplásticos , Próstata , Humanos , Masculino , Microplásticos/análisis , Próstata/química , Próstata/cirugía , Anciano , Persona de Mediana Edad
17.
Arch Pharm (Weinheim) ; : e202400001, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747690

RESUMEN

Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.

18.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892189

RESUMEN

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Asunto(s)
Bencimidazoles , Electrodos , Bencimidazoles/química , Polímeros/química , Nanofibras/química , Suministros de Energía Eléctrica , Membranas Artificiales , Electrólitos/química , Resinas Acrílicas/química
19.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999183

RESUMEN

The growing requirements regarding the safety of using polymers and their composites are related to the emergence of more effective, sustainable, and hazardous-limited fire retardants (FRs). Significant amounts of FRs are usually required to effectively affect a polymer's burning behavior, while the knowledge of their recycling potential is still insufficient. At the same time, concerns are related not only to the reduced effectiveness of flame retardancy but also, above all, to the potential deterioration of mechanical properties caused by the degradation of temperature-affected additives under processing conditions. This study describes the impact of the four-time reprocessing of bio-based polyamide 11 (PA11) modified with an intumescent flame-retardant (IFR) system composed of ammonium polyphosphate (APP), melamine cyanurate (MC), and pentaerythritol (PER) and its composites containing additional short basalt fibers (BFs). Composites manufactured via twin-screw extrusion were subjected to four reprocessing cycles using injection molding. A comprehensive analysis of their structural, mechanical, and fire behavior changes in each cycle was conducted. The obtained results confirmed the safety of using the proposed fire-retarded polyamide and its composites while reprocessing under the recommended process parameters without the risk of significant changes in the structure. The partial increase in flammability of reprocessed PA-based materials caused mainly by polymer degradation has been described.

20.
Molecules ; 29(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893319

RESUMEN

Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine.


Asunto(s)
Materiales Biocompatibles , Impresión Tridimensional , Materiales Biocompatibles/química , Humanos , Bioimpresión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA