Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Annu Rev Microbiol ; 74: 159-179, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32603625

RESUMEN

The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.


Asunto(s)
Bacterias/metabolismo , AMP Cíclico/metabolismo , Homeostasis , Sistemas de Mensajero Secundario , Transducción de Señal , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , AMP Cíclico/genética , Riboswitch
3.
J Bacteriol ; 206(9): e0010724, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39133005

RESUMEN

Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Regulación Bacteriana de la Expresión Génica , Potasio , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/crecimiento & desarrollo , Potasio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mutación , Fosforilación , Transporte Biológico
4.
J Biol Chem ; 299(2): 102846, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586436

RESUMEN

Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Escherichia coli K12 , Proteínas de Escherichia coli , Canales de Potasio , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37690599

RESUMEN

Insects experience different kinds of environmental stresses that can impair neural performance, leading to spreading depolarization (SD) of nerve cells and neural shutdown underlying coma. SD is associated with a sudden loss of ion, notably K+, homeostasis in the central nervous system. The sensitivity of an insect's nervous system to stress (e.g., anoxia) can be modulated by acute pre-treatment. Rapid cold hardening (RCH) is a form of preconditioning, in which a brief exposure to low temperature can enhance the stress tolerance of insects. We used a pharmacological approach to investigate whether RCH affects anoxia-induced SD in the locust, Locusta migratoria, via one or more of the following homeostatic mechanisms: (1) Na+/K+-ATPase (NKA), (2) Na+/K+/2Cl- co-transporter (NKCC), and (3) voltage-gated K+ (Kv) channels. We also assessed abundance and phosphorylation of NKCC using immunoblotting. We found that inhibition of NKA or Kv channels delayed the onset of anoxia-induced SD in both control and RCH preparations. However, NKCC inhibition preferentially abrogated the effect of RCH. Additionally, we observed a higher abundance of NKCC in RCH preps but no statistical difference in its phosphorylation level, indicating the involvement of NKCC expression or degradation as part of the RCH mechanism.


Asunto(s)
Sistema Nervioso Central , Locusta migratoria , Animales , Hipoxia , Adenosina Trifosfatasas , Frío
6.
J Bacteriol ; 204(7): e0014222, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35699453

RESUMEN

Staphylococcus aureus Tet38 efflux pump has multiple functions, including conferring resistance to tetracycline and other compounds and enabling internalization and survival within epithelial cells. In this study, we evaluated the effects of sodium and potassium on tet38 expression. These monovalent cations are known to play a role in transport by the related S. aureus TetK and B. subtilis TetL transporters. tet38 transcription decreased with increasing sodium concentrations by means of direct repression by the salt stress-dependent KdpD/E regulator. tet38 transcription increased 20-fold and tetracycline minimum inhibitory concentration (MIC) increased 4-fold in a ΔkdpD mutant. KdpE bound specifically to the tet38 promoter. Under extreme salt stress, the survival of S. aureus with intact tet38 was reduced compared to that of a Δtet38 mutant. To study the effect of sodium on Tet38 function, we generated constructs overexpressing tet38 and tetK and introduced them into Escherichia coli TO114, which is deficient in major sodium transporters. Tet38 tetracycline efflux was directly demonstrated in a fluorescence assay, and tetracycline efflux of both Tet38 and TetK was abolished by the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In contrast, NaCl inhibited efflux by Tet38 but not TetK, whereas KCl inhibited efflux by TetK but not Tet38. Cell-associated Na increased with heterologous overexpression of Tet38. These data indicate that S. aureus Tet38 is a tetracycline efflux pump regulated by the KdpD/E regulator. Under salt stress, S. aureus adjusted its survival in part by reducing the expression of tet38 through KdpD/E. The mechanisms by which Tet38 is detrimental to salt tolerance in S. aureus and inhibited by sodium remain to be determined. IMPORTANCE This study shows that S. aureus Tet38 is a tetracycline efflux pump regulated by KdpD/E regulator. These findings are the first direct demonstration of Tet38-mediated tetracycline efflux, which had previously been inferred from its ability to confer tetracycline resistance. Under salt stress, S. aureus adjusts its survival in part by reducing the expression of tet38 through KdpD/E. We demonstrated the differences in the respective functions of S. aureus Tet38 and other tetracycline efflux transporters (S. aureus TetK, B. subtilis TetL) regarding their transport of tetracycline and Na+/K+. Notably, sodium selectively reduced tetracycline efflux by Tet38, and potassium selectively reduced tetracycline efflux by TetK. The multiple functions of Tet38 emphasize its importance in bacterial adaptation to and survival in diverse environments.


Asunto(s)
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Estrés Salino , Sodio/metabolismo , Staphylococcus aureus/metabolismo , Tetraciclina/farmacología
7.
Am J Physiol Cell Physiol ; 322(3): C410-C420, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080924

RESUMEN

Extracellular potassium (K+) homeostasis is achieved by a concerted effort of multiple organs and tissues. A limitation in studies of K+ homeostasis is inadequate techniques to quantify K+ fluxes into and out of organs and tissues in vivo. The goal of the present study was to test the feasibility of a novel approach to estimate K+ distribution and fluxes in vivo using stable K+ isotopes. 41K was infused as KCl into rats consuming control or K+-deficient chow (n = 4 each), 41K-to-39K ratios in plasma and red blood cells (RBCs) were measured by inductively coupled plasma mass spectrometry, and results were subjected to compartmental modeling. The plasma 41K/39K increased during 41K infusion and decreased upon infusion cessation, without altering plasma total K+ concentration ([K+], i.e., 41K + 39K). The time course of changes was analyzed with a two-compartmental model of K+ distribution and elimination. Model parameters, representing transport into and out of the intracellular pool and renal excretion, were identified in each rat, accurately predicting decreased renal K+ excretion in rats fed K+-deficient vs. control diet (P < 0.05). To estimate rate constants of K+ transport into and out of RBCs, 41K/39K were subjected to a simple model, indicating no effects of the K+-deficient diet. The findings support the feasibility of the novel stable isotope approach to quantify K+ fluxes in vivo and sets a foundation for experimental protocols using more complex models to identify heterogeneous intracellular K+ pools and to answer questions pertaining to K+ homeostatic mechanisms in vivo.


Asunto(s)
Potasio , Animales , Homeostasis , Isótopos de Potasio , Ratas
8.
Am J Physiol Renal Physiol ; 322(2): F121-F137, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894726

RESUMEN

Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption are required despite many kaliuretic factors. The goal of this study was to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid and late pregnancy. The midpregnant and late-pregnant rat superficial nephron models predicted that morphological adaptations and increased activity of Na+/H+ exchanger 3 (NHE3) and epithelial Na+ channel are essential for the enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased activity of H+-K+-ATPase and decreased K+ secretion along the distal segments is required in both mid and late pregnancy. The model results also suggested that certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared with male rats) may serve to better prepare females for the increased transport demand in pregnancy.NEW & NOTEWORTHY Normal pregnancy in mammals is generally characterized by massive changes in plasma volume and electrolyte retention. This study provides insights into how the volume and electrolyte requirement in different pregnancy stages are met by coordinated adaptive changes in the kidney. The model results also suggested that certain known sex differences in the renal transporter pattern may serve to better prepare females for the increased transport demand in pregnancy.


Asunto(s)
Células Epiteliales/metabolismo , Tasa de Filtración Glomerular , Modelos Biológicos , Nefronas/metabolismo , Potasio/metabolismo , Reabsorción Renal , Sodio/metabolismo , Equilibrio Hidroelectrolítico , Adaptación Fisiológica , Animales , Acuaporinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Nefronas/citología , Volumen Plasmático , Embarazo , Ratas , Factores Sexuales , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142572

RESUMEN

Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Distrofina/metabolismo , Ratones , Ratones Endogámicos mdx , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Uridina/metabolismo , Uridina/farmacología
10.
Bull Environ Contam Toxicol ; 109(5): 920-926, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36129516

RESUMEN

Thallium (Tl) is a highly toxic element with two species, Tl(I) and Tl(III). We discovered the Tl uptake in rice exposed to Tl(III) hydroponic treatment was significantly lower than that to Tl(I) treatment, but the content of oxalic acid secreted from roots in Tl(III) treatment was higher than that in Tl(I). The physiological and molecular mechanisms underlying the difference between the two Tl species were studied using a hydroponic system. The results showed the reduction of oxalic acid content had no effect on the amount of Tl on the root surface, indicating oxalic acid might not immobilize Tl to affect the Tl uptake. Therefore, the secretion of oxalic acid from roots may not be a strategy for detoxifying Tl in rice. Notably, Tl(III) increased the expression of Oryza sativa H+-ATPase genes OsAs and the activity of H+-ATPase, and decreased potassium transport gene expression of OsKAT1.1 and OsHKT2;4, which indicated that the difference in Tl uptake of rice between the two Tl species mainly cause by the potassium transport system rather than oxalic acid.


Asunto(s)
Oryza , Oryza/metabolismo , Talio , Hidroponía , Ácido Oxálico/metabolismo , Potasio , Raíces de Plantas/metabolismo
11.
Appl Environ Microbiol ; 87(13): e0310020, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893111

RESUMEN

Biotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is a vital cell factory, but more diverse cell factories are essential for the sustainable use of natural resources. Here, we benchmarked nonconventional yeasts Kluyveromyces marxianus and Rhodotorula toruloides against S. cerevisiae strains CEN.PK and W303 for their responses to potassium and sodium salt stress. We found an inverse relationship between the maximum growth rate and the median cell volume that was responsive to salt stress. The supplementation of K+ to CEN.PK cultures reduced Na+ toxicity and increased the specific growth rate 4-fold. The higher K+ and Na+ concentrations impaired ethanol and acetate metabolism in CEN.PK and acetate metabolism in W303. In R. toruloides cultures, these salt supplementations induced a trade-off between glucose utilization and cellular aggregate formation. Their combined use increased the beta-carotene yield by 60% compared with that of the reference. Neural network-based image analysis of exponential-phase cultures showed that the vacuole-to-cell volume ratio increased with increased cell volume for W303 and K. marxianus but not for CEN.PK and R. toruloides in response to salt stress. Our results provide insights into common salt stress responses in yeasts and will help design efficient bioprocesses. IMPORTANCE Characterization of microbial cell factories under industrially relevant conditions is crucial for designing efficient bioprocesses. Salt stress, typical in industrial bioprocesses, impinges upon cell volume and affects productivity. This study presents an open-source neural network-based analysis method to evaluate volumetric changes using yeast optical microscopy images. It allows quantification of cell and vacuole volumes relevant to cellular physiology. On applying salt stress in yeasts, we found that the combined use of K+ and Na+ improves the cellular fitness of Saccharomyces cerevisiae strain CEN.PK and increases the beta-carotene productivity in Rhodotorula toruloides, a commercially important antioxidant and a valuable additive in foods.


Asunto(s)
Kluyveromyces/efectos de los fármacos , Potasio/farmacología , Rhodotorula/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Estrés Salino , Sodio/farmacología , Acetatos/metabolismo , Etanol/metabolismo , Glucosa/metabolismo , Kluyveromyces/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638737

RESUMEN

Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.


Asunto(s)
Cambio Climático , Frutas/crecimiento & desarrollo , Enfermedades de las Plantas , Potasio/metabolismo , Estrés Fisiológico , Vitis/crecimiento & desarrollo , Transporte Iónico
13.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672907

RESUMEN

HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Plantas/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Proteínas de Transporte de Catión/clasificación , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Transporte Iónico , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microalgas/genética , Microalgas/metabolismo , Filogenia , Proteínas de Plantas/genética , Simportadores/clasificación , Simportadores/genética
14.
J Bacteriol ; 202(12)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32253343

RESUMEN

Potassium and glutamate are the major cation and anion, respectively, in every living cell. Due to the high concentrations of both ions, the cytoplasm of all cells can be regarded as a potassium glutamate solution. This implies that the concentrations of both ions need to be balanced. While the control of potassium uptake by glutamate is well established for eukaryotic cells, much less is known about the mechanisms that link potassium homeostasis to glutamate availability in bacteria. Here, we have discovered that the availability of glutamate strongly decreases the minimal external potassium concentration required for the highly abundant Bacillus subtilis potassium channel KtrCD to accumulate potassium. In contrast, the inducible KtrAB and KimA potassium uptake systems have high apparent affinities for potassium even in the absence of glutamate. Experiments with mutant strains revealed that the KtrD subunit responds to the presence of glutamate. For full activity, KtrD synergistically requires the presence of the regulatory subunit KtrC and of glutamate. The analysis of suppressor mutants of a strain that has KtrCD as the only potassium uptake system and that experiences severe potassium starvation identified a mutation in the ion selectivity filter of KtrD (Gly282 to Val) that similarly results in a strongly glutamate-independent increase of the apparent affinity for potassium. Thus, this work has identified two conditions that increase the apparent affinity of KtrCD for potassium, i.e., external glutamate and the acquisition of a single point mutation in KtrD.IMPORTANCE In each living cell, potassium is required for maintaining the intracellular pH and for the activity of essential enzymes. Like most other bacteria, Bacillus subtilis possesses multiple low- and high-affinity potassium uptake systems. Their activity is regulated by the second messenger cyclic di-AMP. Moreover, the pools of the most abundant ions potassium and glutamate must be balanced. We report two conditions under which the low-affinity potassium channel KtrCD is able to mediate potassium uptake at low external potassium concentrations: physiologically, the presence of glutamate results in a severely increased potassium uptake. Moreover, this is achieved by a mutation affecting the selectivity filter of the KtrD channel. These results highlight the integration between potassium and glutamate homeostasis in bacteria.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Ácido Glutámico/metabolismo , Canales de Potasio/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/química , Cinética , Potasio/química , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética
15.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32839175

RESUMEN

Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.


Asunto(s)
Bacterias/metabolismo , AMP Cíclico/fisiología , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cianobacterias/fisiología , Daño del ADN/fisiología , Farmacorresistencia Bacteriana/fisiología , Homeostasis/fisiología , Concentración Osmolar
16.
J Biol Chem ; 294(32): 12180-12190, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235523

RESUMEN

Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+ This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Unión Competitiva , Cationes/química , Transportador 3 de Aminoácidos Excitadores/química , Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Cinética , Técnicas de Placa-Clamp , Potasio/química , Unión Proteica , Sodio/química
17.
J Biol Chem ; 294(18): 7335-7347, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804209

RESUMEN

The Bunyavirales order of segmented negative-sense RNA viruses includes more than 500 isolates that infect insects, animals, and plants and are often associated with severe and fatal disease in humans. To multiply and cause disease, bunyaviruses must translocate their genomes from outside the cell into the cytosol, achieved by transit through the endocytic network. We have previously shown that the model bunyaviruses Bunyamwera virus (BUNV) and Hazara virus (HAZV) exploit the changing potassium concentration ([K+]) of maturing endosomes to release their genomes at the appropriate endosomal location. K+ was identified as a biochemical cue to activate the viral fusion machinery, promoting fusion between viral and cellular membranes, consequently permitting genome release. In this study, we further define the biochemical prerequisites for BUNV and HAZV entry and their K+ dependence. Using drug-mediated cholesterol extraction along with viral entry and K+ uptake assays, we report three major findings: BUNV and HAZV require cellular cholesterol during endosomal escape; cholesterol depletion from host cells impairs K+ accumulation in maturing endosomes, revealing new insights into endosomal K+ homeostasis; and "priming" BUNV and HAZV virions with K+ before infection alleviates their cholesterol requirement. Taken together, our findings suggest a model in which cholesterol abundance influences endosomal K+ levels and, consequently, the efficiency of bunyavirus infection. The ability to inhibit bunyaviruses with existing cholesterol-lowering drugs may offer new options for future antiviral interventions for pathogenic bunyaviruses.


Asunto(s)
Colesterol/metabolismo , Endosomas/metabolismo , Orthobunyavirus/fisiología , Potasio/metabolismo , Internalización del Virus , Línea Celular Tumoral , Endocitosis , Humanos , Transporte Iónico , Virión/fisiología
18.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31061098

RESUMEN

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Homeostasis , Potasio/metabolismo , Sistemas de Mensajero Secundario/fisiología , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Mutación
19.
J Biol Chem ; 294(1): 269-280, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409907

RESUMEN

The cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome is caused by the single mutation E818K of the α3-isoform of Na+,K+-ATPase. Here, using biochemical and electrophysiological approaches, we examined the functional characteristics of E818K, as well as of E818Q and E818A mutants. We found that these amino acid substitutions reduce the apparent Na+ affinity at the cytoplasmic-facing sites of the pump protein and that this effect is more pronounced for the lysine and glutamine substitutions (3-4-fold) than for the alanine substitution. The electrophysiological measurements indicated a more conspicuous, ∼30-fold reduction of apparent Na+ affinity for the extracellular-facing sites in the CAPOS mutant, which was related to an accelerated transition between the phosphoenzyme intermediates E1P and E2P. The apparent affinity for K+ activation of the ATPase activity was unaffected by these substitutions, suggesting that primarily the Na+-specific site III is affected. Furthermore, the apparent affinities for ATP and vanadate were WT-like in E818K, indicating a normal E1-E2 equilibrium of the dephosphoenzyme. Proton-leak currents were not increased in E818K. However, the CAPOS mutation caused a weaker voltage dependence of the pumping rate and a stronger inhibition by cytoplasmic K+ than the WT enzyme, which together with the reduced Na+ affinity of the cytoplasmic-facing sites precluded proper pump activation under physiological conditions. The functional deficiencies could be traced to the participation of Glu-818 in an intricate hydrogen-bonding/salt-bridge network, connecting it to key residues involved in Na+ interaction at site III.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ataxia Cerebelosa/metabolismo , Deformidades Congénitas del Pie/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Potenciales de la Membrana , Mutación Missense , Atrofia Óptica/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfato/genética , Sustitución de Aminoácidos , Animales , Ataxia Cerebelosa/genética , Deformidades Congénitas del Pie/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Atrofia Óptica/genética , Dominios Proteicos , Reflejo Anormal/genética , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , Vanadatos/farmacología , Xenopus laevis
20.
J Bacteriol ; 201(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30745376

RESUMEN

Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Lactococcus lactis/enzimología , Proteínas de Transporte de Membrana/metabolismo , Potasio/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Lactococcus lactis/genética , Proteínas de Transporte de Membrana/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA