Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; 300(3): 105647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219818

RESUMEN

Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near ß-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured ß-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.


Asunto(s)
Pisum sativum , Proteínas de Plantas , Pterocarpanos , Pisum sativum/química , Pisum sativum/metabolismo , Pterocarpanos/química , Pterocarpanos/metabolismo , Estereoisomerismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Modelos Moleculares , Conformación Molecular
2.
J Asian Nat Prod Res ; 26(3): 394-398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37342004

RESUMEN

A new C22 polyacetylene, erysectol A (1), and seven isoprenylated pterocarpans, phaseollin (2), phaseollidin (3), cristacarpin (4), (3'R)-erythribyssin D/(3'S)-erythribyssin D (5a/5b) and dolichina A/dolichina B (6a/6b) were isolated from the twigs and leaves of Erythrina subumbrans. Their structures were determined based on their NMR spectral data. Except for 2-4, all the other compounds were isolated from this plant for the first time. Erysectol A was the first reported C22 polyacetylene from plants. Polyacetylene was isolated from Erythrina plants for the first time.


Asunto(s)
Erythrina , Pterocarpanos , Pterocarpanos/química , Erythrina/química
3.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125081

RESUMEN

The pterocarpan fraction from aerial parts of Bituminaria bituminosa was investigated for both chemical characterization and biological evaluation. Chemical studies were in accordance with the literature data on Bituminaria genus resulting in the identification of typical 4,8-prenyl pterocarpans. Three new members, bituminarins A-C (1-3), were isolated along with main bitucarpin A (4), erybraedin C (5) and erybraedin D (6) already reported from this plant. Further, biological studies evidenced antiproliferative properties of the most abundant pterocarpans 4 and 5 on neuroblastoma SH-SY5Y cell line, in agreement with previously described antiproliferative activity of these compounds against cancer cell lines other than neuroblastoma. The structure and the stereochemistry of the new molecules was determined by extensive spectroscopic analysis and chemical derivatization methods. The biological investigation was carried out by using an assay platform based on a live-cell imaging system revealing an apoptotic cell death induction.


Asunto(s)
Antineoplásicos Fitogénicos , Neuroblastoma , Pterocarpanos , Humanos , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Línea Celular Tumoral , Pterocarpanos/química , Pterocarpanos/farmacología , Pterocarpanos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos
4.
J Biol Chem ; 295(33): 11584-11601, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32565424

RESUMEN

The biochemical activities of dirigent proteins (DPs) give rise to distinct complex classes of plant phenolics. DPs apparently began to emerge during the aquatic-to-land transition, with phylogenetic analyses revealing the presence of numerous DP subfamilies in the plant kingdom. The vast majority (>95%) of DPs in these large multigene families still await discovery of their biochemical functions. Here, we elucidated the 3D structures of two pterocarpan-forming proteins with dirigent-like domains. Both proteins stereospecifically convert distinct diastereomeric chiral isoflavonoid precursors to the chiral pterocarpans, (-)- and (+)-medicarpin, respectively. Their 3D structures enabled comparisons with stereoselective lignan- and aromatic terpenoid-forming DP orthologs. Each protein provides entry into diverse plant natural products classes, and our experiments suggest a common biochemical mechanism in binding and stabilizing distinct plant phenol-derived mono- and bis-quinone methide intermediates during different C-C and C-O bond-forming processes. These observations provide key insights into both their appearance and functional diversification of DPs during land plant evolution/adaptation. The proposed biochemical mechanisms based on our findings provide important clues to how additional physiological roles for DPs and proteins harboring dirigent-like domains can now be rationally and systematically identified.


Asunto(s)
Glycyrrhiza/metabolismo , Ligasas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/metabolismo , Cristalografía por Rayos X , Glycyrrhiza/química , Indolquinonas/metabolismo , Ligasas/química , Simulación del Acoplamiento Molecular , Pisum sativum/química , Proteínas de Plantas/química , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
5.
Bioorg Chem ; 107: 104584, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33453646

RESUMEN

Natural pterocarpans and synthetic 5-carba-pterocarpans are isosteres in which the oxygen atom at position 5 in the pyran-ring of pterocarpans is replaced by a methylene group. These 5-carba-analogues were obtained in good yields through the palladium-catalyzed oxyarylation of alcoxy-1,2-dihydronaphthalens with o-iodophenols in PEG-400. They were evaluated on human cancer cell lineages derived respectively from prostate tumor (PC3, IC50 = 11.84 µmol L-1, SI > 12)) and acute myeloid leukemia (HL-60, IC50 = 8.81 µmol L-1, SI > 16), highly incident cancer types presenting resistance against traditional chemotherapeutics. Compound 6c (LQB-492) was the most potent (IC50 = 3.85 µmol L-1, SI > 37) in SF-295 cell lineage (glioblastoma). Such findings suggest that 5-carba-pterocarpan can potentially be new hit compounds for further development of novel antiproliferative agents.


Asunto(s)
Antineoplásicos/farmacología , Pterocarpanos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Estructura Molecular , Pterocarpanos/síntesis química , Pterocarpanos/química , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 25(18): 3825-30, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26248805

RESUMEN

A phytochemical investigation of the roots of Ononis angustissima L. (Fabaceae) offered to the bio-guided isolation of new isoflavone 3-(4-(glucopyranosyloxy)-5-hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one 1, together with nine known compounds, ononin 2, formononetin 3, (+)-puerol A-2'-O-ß-D-glucose 4, (-)-puerol B-2'-O-ß-D-glucopyranose ((-)-sophoraside A) 5, (+)-puerol A 6, (-)-trifolirhizin 7, (-)-trifolirhizin-6'-O-malonate 8, (-)-maackiain 9 and (-)-medicarpin 10. Compounds 2-10 were isolated and identified for the first time in Ononis angustissima. We investigated antioxidant capacities of isolated molecules and results showed that compound 6 exhibited the highest antioxidant activity with IC50 values of 19.53 µg/mL, 28.29 µg/mL and 38.53 µg/mL by DPPH radical, ABTS radical cation and reducing power assay, respectively, and an interesting IC50 (20.45 µg/mL) of 1 against DPPH. In addition, the neuroprotective activity of six isolated molecules (4-7, 9, 10) were evaluated. Following the exposure of PC12 cells to Aß25-35, compounds 9 and 10 triggered a significant increase of cell viability and in a dose dependent manner.


Asunto(s)
Antioxidantes/farmacología , Ononis/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Radicales Libres/antagonistas & inhibidores , Estructura Molecular , Células PC12 , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas , Relación Estructura-Actividad , Ácidos Sulfónicos/antagonistas & inhibidores , Túnez
7.
Nat Prod Res ; : 1-6, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222477

RESUMEN

Pleurolobus gangeticus, also known as 'Salparni', is a valuable herb with significant medicinal properties. Previous studies on the plant have only used conventional GC-MS to analyse its metabolites. In this study, we utilised two-dimensional gas chromatography and time-of-flight mass spectrometry to precisely characterise the shoot and root volatiles of Pleurolobus gangeticus. The ethyl acetate extract of both tissues revealed 50 prominent volatile phytoconstituents in each, accounting for 99.9% and 100.1% of the total volatiles, respectively. The most abundant chemicals found in the root were alcohols (19%) and fatty acids (17%), while the shoot primarily contained organic compounds (24%) and esters (20%). The major phytoconstituents in the root were hexadecanoic acid, 2-hydroxy-1ethyl ester (16.1%), octadecanoic acid, and 2,3-dihydroxypropyl ester (10.5%). Conversely, the shoot was dominated by n-hexadecanoic acid (9.1%), linoleic acid (7.4%), and neophytadiene (5.6%). These findings highlight the potential of Pleurolobus gangeticus for further research and development in medicinal applications.

8.
Nat Prod Res ; 37(20): 3374-3379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35583301

RESUMEN

Sophora flavescens is a widely used traditional Chinese herbal medicine. In this work, a new pterocarpan glycoside, kurarinol C (1) together with six known compounds, sophoracarpan A (2), trifohrhizin-6'-monoacetate (3), trifohrhizin (4), maackiain (5), (6S,6aS,11aR)-6α-methoxy-pterocarpin (6), L-maackiain (7) were isolated from the roots of S. flavescens. Among them, compounds 2 and 6 were discovered from S. flavescens for the first time. Their chemical structures were elucidated on the basis of extensive NMR and MS analyses. Furthermore, the antioxidant activities of these compounds were evaluated by the ABTS and DPPH free radical scavenging assay. Three compounds (5, 6, 7) exhibited stronger antioxidant capacity against the ABTS enzyme at 20 µg/mL (scavenging rates > 55%).

9.
Front Pharmacol ; 14: 1281150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044940

RESUMEN

The concept of using plants to alleviate diseases is always challenging. In West Java, Indonesia, a local plant, named dadap serep has been traditionally used to reduce blood glucose, fever, and edema, by pounding the leaves and applying them on the inflamed skin, or boiled and consumed as herbal tea. This plant belongs to the Erythrina genus, which covers approximately 120 species. The scope of this review (1943-2023) is related to the Global Development Goals, in particular Goal 3: Good Health and Wellbeing, by focusing on the pharmacology activity, toxicity, and clinical trials of Erythrina genus plants and their metabolites, e.g., pterocarpans, alkaloids, and flavonoids. Articles were searched on PubMed and ScienceDirect databases, using "Erythrina" AND "pharmacology activity" keywords, and only original articles written in English and open access were included. In vitro and in vivo studies reveal promising results, particularly for antibacterial and anticancer activities. The toxicity and clinical studies of Erythrina genus plants are limitedly reported. Considering that extensive caution should be taken when prescribing botanical drugs for patients parallelly taking a narrow therapeutic window drug, it is confirmed that no interactions of the Erythrina genus were recorded, indicating the safety of the studied plants. We, therefore, concluded that Erythrina genus plants are promising to be further explored for their effects in various signaling pathways as future plant-based drug candidates.

10.
Heliyon ; 9(2): e13082, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36798775

RESUMEN

Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by chromatographic techniques and identified by nuclear magnetic resonance spectroscopy. Eight derivatives were obtained from 1 corresponding to 3,9-dimethoxy-8-nitropterocarpan (2), 3,9-dimethoxy-2,8-dinitropterocarpan (3), 3,9-dimethoxy-2,8,10-trinitropterocarpan (4), 2,8-diamino-3,9-dimethoxypterocarpan (5), 3,9-dimethylcoumestan (6), medicarpin (7), 2'-hydroxy-4-(2-hydroxyethylsulfanyl)-7,4'-dimethoxyisoflavan (8), and 4-(2-hydroxyethylsulfanyl)-7,2',4'-trimethoxyisoflavan (9). The in vitro antifungal activity of the derivatives was determined at concentrations between 35 and 704 µM. Compounds 7 and 8 at 704 µM, showed an inhibition of radial growth and spore germination close to 100%, exceeding that found for the starting compound 1, which was 46%. Growth inhibition assays were also performed for the derivative 8 on papaya fruits (Carica papaya L. cv. Hawaiana) and mango (Mangifera indica L. cv. Hilacha) infected with C. gloeosporioides. Compound 8 showed fungal growth inhibition in fruits higher than that found for 1 and thymol (a recognized natural antifungal), under the same conditions. In general, derivatives that exhibited greater antifungal activity correspond to the compounds containing hydroxyl groups in the structure. Some of the compounds obtained could be considered promising for the control of phytopathogenic fungi.

11.
Nat Prod Res ; 37(5): 829-834, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35722767

RESUMEN

Chemical analysis of the methanol extract of the root bark of Millettia aboensis led to the isolation of homopterocarpin (1), secundiflorol I (2), and maackain (3). The structures of these compounds were elucidated based on their MS and NMR spectra. The crude methanol root extract was screened for its cytotoxic activity on mouse lymphoma cell line (L5178Y), and the isolated compounds were tested for their antioxidant activity using a 2, 2-diphenylhydrazyl (DPPH) radical scavenging model. The crude methanol root extract gave a percentage growth inhibition of 87.5% on the mouse lymphoma cell line (L5178Y). Compound 3 gave the highest antioxidant activity with an IC50 of 83 µg/ml. These compounds can serve as leads for anticancer agents.


Asunto(s)
Antineoplásicos , Millettia , Pterocarpanos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Pterocarpanos/farmacología , Pterocarpanos/química , Millettia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metanol
12.
Front Bioeng Biotechnol ; 11: 1154779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187887

RESUMEN

The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.

13.
Phytochemistry ; 212: 113709, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150433

RESUMEN

The heartwood extract of the Ayurvedic medicinal plant Pterocarpus santalinus L. f. has previously been shown to significantly suppress the expression of CX3CL1 and other pro-inflammatory molecules in IL-1-stimulated human endothelial cells. Here, we identify the pigment-depleted extract PSD as the most promising yet still complex source of metabolites acting as an inhibitor of CX3CL1 gene expression. For the target-oriented identification of the constituents contributing to the observed in vitro anti-inflammatory effect of PSD, the biochemometric approach ELINA (Eliciting Nature's Activities) was applied. ELINA relies on the deconvolution of complex mixtures by generating microfractions with quantitative variances of constituents over several consecutive fractions. Therefore, PSD was separated into 35 microfractions by means of flash chromatography. Their 1H NMR data and bioactivity data were correlated by heterocovariance analysis. Complemented by LC-MS-ELSD data, ELINA differentiated between constituents with positive and detrimental effects towards activity and allowed for the prioritization of compounds to be isolated in the early steps of phytochemical investigation. A hyphenated high-performance counter-current chromatographic device (HPCCC+) was employed for efficient and targeted isolation of bioactive constituents. A total of 15 metabolites were isolated, including four previously unreported constituents and nine that have never been described before from red sandalwood. Nine isolates were probed for their inhibitory effects on CX3CL1 gene expression, of which four isoflavonoids, namely pterosonin A (1), santal (6), 7,3'-dimethylorobol (12) and the previously unreported compound pterosantalin A (2), were identified as pronounced inhibitors of CX3CL1 gene expression in vitro.


Asunto(s)
Células Endoteliales , Pterocarpus , Humanos , Pterocarpus/química , Extractos Vegetales/química , Expresión Génica
14.
Methods Enzymol ; 683: 101-150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37087184

RESUMEN

Aquatic plant transition to land, and subsequent terrestrial plant species diversification, was accompanied by the emergence and massive elaboration of plant phenol chemo-diversity. Concomitantly, dirigent protein (DP) and dirigent-like protein subfamilies, derived from large multigene families, emerged and became extensively diversified. DP biochemical functions as gateway entry points into new and diverse plant phenol skeletal types then markedly expanded. DPs have at least eight non-uniformly distributed subfamilies, with different DP subfamily members of known biochemical/physiological function now implicated as gateway entries to lignan, lignin, aromatic diterpenoid, pterocarpan and isoflavene pathways. While some other DP subfamily members have jacalin domains, both these and indeed the majority of DPs throughout the plant kingdom await discovery of their biochemical roles. Methods and approaches were developed to discover DP biochemical function as gateway entry points to distinct plant phenol skeletal types in land plants. Various DP 3D X-ray structural determinations enabled structure-based comparative sequence analysis and modeling to understand similarities and differences among the different DP subfamilies. We consider that the core DP ß-barrel fold and associated characteristics are likely common to all DPs, with several residues conserved and nearly invariant. There is also considerable variation in residue composition and topography of the putative substrate binding pockets, as well as substantial differences in several loops, such as the ß1-ß2 loop. All DPs likely bind and stabilize quinone methide intermediates, while guiding distinctive regio- and/or stereo-chemical entry into Nature's chemo-diverse land plant phenol metabolic classes.


Asunto(s)
Fenoles , Plantas , Plantas/genética , Plantas/metabolismo , Fenoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Filogenia
15.
Nat Prod Res ; 36(14): 3598-3602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33430643

RESUMEN

Two new flavanoids fissistiganoids A and B (1 and 2), together with two known pterocarpans derivatives (3 and 4), were isolated from the stems of Fissistigma tungfangense. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The absolute configurations of fissistiganoids A and B (1 and 2) were determined by comparing their ECD spectra with quantum-mechanics ECD calculations. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated. Compounds 1-4 showed moderate inhibitory effects on HeLa, MCF-7 and A549 cells with IC50 values ranging from 12.5 to 42.3 µM.


Asunto(s)
Annonaceae , Pterocarpanos , Células A549 , Flavonoides/química , Flavonoides/farmacología , Humanos , Estructura Molecular
16.
Antioxidants (Basel) ; 11(4)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35453394

RESUMEN

Pterocarpans and related polyphenolics are known as promising neuroprotective agents. We used models of rotenone-, paraquat-, and 6-hydroxydopamine-induced neurotoxicity to study the neuroprotective activity of polyphenolic compounds from Lespedeza bicolor and their effects on mitochondrial membrane potential. We isolated 11 polyphenolic compounds: a novel coumestan lespebicoumestan A (10) and a novel stilbenoid 5'-isoprenylbicoloketon (11) as well as three previously known pterocarpans, two pterocarpens, one coumestan, one stilbenoid, and a dimeric flavonoid. Pterocarpans 3 and 6, stilbenoid 5, and dimeric flavonoid 8 significantly increased the percentage of living cells after treatment with paraquat (PQ), but only pterocarpan 6 slightly decreased the ROS level in PQ-treated cells. Pterocarpan 3 and stilbenoid 5 were shown to effectively increase mitochondrial membrane potential in PQ-treated cells. We showed that pterocarpans 2 and 3, containing a 3'-methyl-3'-isohexenylpyran ring; pterocarpens 4 and 9, with a double bond between C-6a and C-11a; and coumestan 10 significantly increased the percentage of living cells by decreasing ROS levels in 6-OHDA-treated cells, which is in accordance with their rather high activity in DPPH• and FRAP tests. Compounds 9 and 10 effectively increased the percentage of living cells after treatment with rotenone but did not significantly decrease ROS levels.

17.
J Ethnopharmacol ; 294: 115364, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35551979

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Harpalyce brasiliana Benth (Leguminosae) is a shrub endemic to Brazil, popularly known as "snake's root." This species is used in folk medicine for the treatment of inflammation and snakebites. However, up to now there is no scientific research to justify its popular use. The study aimed to characterize the phytochemical profile of the hydroethanol extract from the roots of H. brasiliana (Hb), to evaluate its antioxidant and anti-inflammatory potential, as well as to investigate its cytotoxicity and acute toxicity. MATERIALS AND METHODS: The extract was obtained by maceration method using a solution of ethanol:water (70: 30, v/v). The phytochemical profile was obtained by liquid chromatography coupled to mass spectrometry. The cytotoxicity of extract (31-2000 µg/mL) was evaluated in vitro, by the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method using murine macrophage and fibroblast cell lines (RAW 247.6 and 3T3, respectively) and by the hemolytic assay. For the in vivo acute toxicity, the extract (2000 mg/kg) was administered and after 14 days the weight (body and organs) and hematological and biochemical parameters were analyzed. Chemical free radical scavenging effect of the extract (125-2000 µg/mL) was investigated through diphenylpicryl hydrazine reduction, total antioxidant capacity, reducing power, hydroxyl radical scavenging, and iron and copper chelating assays. In vitro anti-inflammatory effect of the extract (125, 500, and 2000 µg/mL) was demonstrated through of nitric oxide (NO) analyzed in lipopolysaccharides stimulated RAW 264.7 cells. In vivo anti-inflammatory activities were evaluated in carrageenan-induced paw edema and zymosan-air-pouch models, with gavage administration (post-treatment) of extract at 100, 200, and 400 mg/kg. For the first animal model, the anti-edematogenic activity and myeloperoxidase (MPO) levels were investigated, while in the zymosan-air-pouch model the leukocyte number, MPO, total protein and pro-inflammatory cytokine (IL-1ß, IL-6, and TNF-α) levels were quantified. In addition, the oxidative parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) were determined. RESULTS: The phytochemical profile revealed the presence of 20 compounds, mainly prenylated and geranylated pterocarpans. The extract demonstrated no cytotoxicity in erythrocytes, macrophages and fibroblasts cells at the tested concentrations, as well as no sign of toxicity and mortality or significant alterations on the hematological and biochemical parameters in the acute toxicity model. The extract was also able to neutralize chemical free radicals, with copper and iron chelating effect. For the NO dosage, the extract evidenced the reduction of expression of NO after the administration of the extract (500 and 2000 µg/mL). The edematogenic model revealed a decrease in paw edema and MPO level, while the zymosan-air-pouch model evidenced a reduction of leukocyte number (especially of polymorphornuclears), MPO production, and total protein and cytokine levels, and demonstrated the antioxidant effect through a decrease in MDA and increase in GSH parameters. CONCLUSION: This approach demonstrates for the first time that Hb is not cytotoxic, has low acute toxicity, and possesses antioxidant and anti-inflammatory properties in preclinical analyses, corroborating its popular use.


Asunto(s)
Antioxidantes , Fabaceae , Animales , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Antioxidantes/toxicidad , Carragenina , Cobre/efectos adversos , Citocinas/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Ratones , Fitoquímicos/toxicidad , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Zimosan
18.
Front Plant Sci ; 13: 1076573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743570

RESUMEN

Introduction: Bituminaria bituminosa is a medicinal plant recognized for its phytochemicals, such as furanocoumarins, pterocarpans, and flavonoids. Since the secondary metabolism is influenced by the plant-endophyte interactions, the endophytic bacterial community of B. bituminosa was explored and the possible interactions with the plant were described. Materials and methods: Different bacterial strains were isolated from different organs of in vitro plants as shoots, roots, and seeds. The bacterial strains were identified and phenotypically characterized for different traits; strains were also exposed to different concentrations of B. bituminosa plant extract showing different susceptibility, probably determined by different secondary metabolites produced by the plant in the different organs (i.e. aerial parts and roots). Results and discussion: Bacterial strains showed different phenotypic characteristics; the 6 detected haplotypes were dominated by a single species related to Stenotrophomonas rhizophila. Endophytes isolated from the aerial parts produced a higher indole-3-acetic acid (IAA) amount than those of the roots, while all strains were unable to produce biosurfactants and antagonistic activity toward the other strains. The research opens new perspectives for future analysis addressed to test the susceptibility of the endophytic bacterial community of B. bituminosa toward the pure compounds extracted from the plants, and to investigate the role of these compounds on the distribution of endophytes within the different plant tissues.

19.
Appl Biochem Biotechnol ; 194(4): 1527-1545, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34792750

RESUMEN

The present research article proposes a conservative approach for the Desmodium gangeticum by using small branches instead of roots because the plant has many important chemical constituents that show different medicinal activity, so the plant's consumption is high. We studied here comparative preliminary phytochemical screening test and physicochemical analysis. The successive soxhlet extraction method was used for the successive extraction of roots and small branches with different solvents for comparative chemical profile study by HPLC and GC-MS. It was observed that many peaks in roots and small branches of the plant sample were almost similar, and the retention time of each peak in roots coincided with the retention of small branches of the sample. Therefore, the similarity was observed in roots and small branches of the Desmodium gangeticum plant in HPLC and GC-MS. The results obtained from HPLC analysis show that roots contain 0.00116% and small branches have 0.00026% of caffeic acid in Desmodium gangeticum. The small branches may have almost similar active chemical constituents like roots. In silico molecular docking study revealed that this plant's principal chemical constituents, pterocarpans, could be inhibitors of protein tyrosine phosphate kinase.


Asunto(s)
Fabaceae , Pterocarpanos , Cromatografía Líquida de Alta Presión , Fabaceae/química , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Raíces de Plantas
20.
Phytochemistry ; 200: 113249, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35609680

RESUMEN

Eleven undescribed and three known pterocarpans were isolated and identified from the traditional Chinese medicine "Huang-qi", Astragali Radix (the root of Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao). The structures of these pterocarpans were determined using spectroscopic, X-ray crystallographic, quantum chemical calculation, and chemical methods. Pterocarpans, almost exclusively distributed in the family of Leguminosae, are the second largest subgroup of isoflavanoids. However, pterocarpan glycoside number is limited, most of which are glucosides, and only one pterocarpan apioside was isolated from nature. Notably, nine rare apiosyl-containing pterocarpan glycosides were isolated and identified. The hypoglycemic activities of all these compounds were evaluated using α-glucosidase and DPP-IV inhibitory assays respectively, and some isolates displayed the α-glucosidase inhibitory function. The antioxidant activities of all compounds were evaluated using the ORAC and DPPH radical scavenging assays, respectively. All compounds exhibited varying degrees of oxygen radical absorbance capacity, and some compounds displayed DPPH radical scavenging ability.


Asunto(s)
Astragalus propinquus , Pterocarpanos , Astragalus propinquus/química , Glicósidos , Medicina Tradicional China , alfa-Glucosidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA