Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(6): 1200-1218.e9, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33951416

RESUMEN

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Autorrenovación de las Células/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Transducción de Señal
2.
J Pharmacol Exp Ther ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858092

RESUMEN

Interleukin (IL)-33 has been shown to centrally regulate, among other processes, inflammation and fibrosis. Both intracellular full-length (FLIL33) precursor and extracellular mature cytokine (MIL33) forms exert such regulation, albeit differentially. Drug development efforts to target the IL-33 pathway have focused mostly on MIL33 and its specific cell-surface receptor, ST2, with limited attempts to negotiate the pathophysiological contributions from FLIL33. Furthermore, even a successful strategy for targeting MIL33 effects would arguably benefit from a simultaneous attenuation of the levels of FLIL33, which remains the continuous source of MIL33 supply. We therefore sought to develop an approach to depleting FLIL33 protein levels. We previously reported that the steady-state levels of FLIL33 are controlled in part through its proteasomal degradation and that such regulation can be mapped to a segment in the N-terminal portion of FLIL33. We hypothesized that disruption of this regulation would lead to a decrease in FLIL33 levels, thus inducing a beneficial therapeutic effect in an IL-33-dependent pathology. To test this hypothesis, we designed and tested cell-permeable decoy peptides (CPDPs) which mimic the target N-terminal FLIL33 region. We argued that such mimic peptides would compete with FLIL33 for the components of the native FLIL33 production and maintenance molecular machinery. Administered in the therapeutic regimen to bleomycin-challenged mice, the tested CPDPs alleviated the overall severity of the disease by restoring body weight loss and attenuating accumulation of collagen in the lungs. This proof-of-principle study lays the foundation for future work towards the development of this prospective therapeutic approach. Significance Statement An antifibrotic therapeutic approach is proposed and preclinically tested in mice in vivo based on targeting the full-length IL-33 precursor protein. Peptide fusion constructs consisted of a cell-permeable sequence fused with a sequence mimicking an N-terminal segment of IL-33 precursor that is responsible for this protein's stability. Systemic administration of such peptides to mice in either the acute intratracheal or chronic systemic bleomycin challenge models leads to a decrease in the bleomycin-induced elevations of pulmonary IL-33 and collagen.

3.
Appl Environ Microbiol ; 90(5): e0217423, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38656183

RESUMEN

The gut microbiota of poultry is influenced by a variety of factors, including feed, drinking water, airborne dust, and footpads, among others. Gut microbiota can affect the immune reaction and inflammation in the lungs. To investigate the effect of gut microbiota variation on lung inflammation induced by PM2.5 (fine particulate matter) in broilers, 36 Arbor Acres (AA) broilers were randomly assigned to three groups: control group (CON), PM2.5 exposure group (PM), and PM2.5 exposure plus oral antibiotics group (PMA). We used non-absorbable antibiotics (ABX: neomycin and amikacin) to modify the microbiota composition in the PMA group. The intervention was conducted from the 18th to the 28th day of age. Broilers in the PM and PMA groups were exposed to PM by a systemic exposure method from 21 to 28 days old, and the concentration of PM2.5 was controlled at 2 mg/m3. At 28 days old, the lung injury score, relative mRNA expression of inflammatory factors, T-cell differentiation, and dendritic cell function were significantly increased in the PM group compared to the CON group, and those of the PMA group were significantly decreased compared to the PM group. There were significant differences in both α and ß diversity of cecal microbiota among these three groups. Numerous bacterial genera showed significant differences in relative abundance among the three groups. In conclusion, gut microbiota could affect PM2.5-induced lung inflammation in broilers by adjusting the capacity of antigen-presenting cells to activate T-cell differentiation. IMPORTANCE: Gut microbes can influence the development of lung inflammation, and fine particulate matter collected from broiler houses can lead to lung inflammation in broilers. In this study, we explored the effect of gut microbes modified by intestinal non-absorbable antibiotics on particulate matter-induced lung inflammation. The results showed that modification in the composition of gut microbiota could alleviate lung inflammation by attenuating the ability of dendritic cells to stimulate T-cell differentiation, which provides a new way to protect lung health in poultry farms.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Material Particulado , Neumonía , Enfermedades de las Aves de Corral , Animales , Pollos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Neumonía/veterinaria , Neumonía/microbiología , Antibacterianos/farmacología , Vivienda para Animales , Pulmón/microbiología , Pulmón/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/genética
4.
Cytokine ; 178: 156563, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38479048

RESUMEN

Neutrophilic pulmonary inflammation in asthmatics substantially exacerbates the severity of the disease leading to resistance to conventional corticosteroid therapy. Many studies established the involvement of Th1- and Th17-cells and cytokines produced by them (IFNg, IL-17A, IL-17F etc.) in neutrophilic pulmonary inflammation. Recent studies revealed that IL-4 - a Th2-cytokine regulates neutrophil effector functions and migration. It was showed that IL-4 substantially reduces neutrophilic inflammation of the skin in a mouse model of cutaneous bacterial infection and blood neutrophilia in a mouse model systemic bacterial infection. However, there are no data available regarding the influence of IL-4 on non-infectious pulmonary inflammation. In the current study we investigated the effects of IL-4 in a previously developed mouse model of neutrophilic bronchial asthma. We showed that systemic administration of IL-4 significantly restricts neutrophilic inflammation of the respiratory tract probably through the suppression of Th1-/Th17-immune responses and downregulation of CXCR2. Additionally, pulmonary neutrophilic inflammation could be alleviated by IL-4-dependant polarization of N2 neutrophils and M2 macrophages, expressing anti-inflammatory TGFß. Considering these, IL-4 might be used for reduction of exaggerated pulmonary neutrophilic inflammation and overcoming corticosteroid insensitivity of asthma patients.


Asunto(s)
Asma , Infecciones Bacterianas , Neumonía , Humanos , Animales , Ratones , Interleucina-4/farmacología , Neutrófilos , Citocinas , Inflamación , Susceptibilidad a Enfermedades , Corticoesteroides/farmacología
5.
Cytokine ; 173: 156419, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976700

RESUMEN

Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1ß, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-ß. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.


Asunto(s)
Exposición por Inhalación , Neumonía , Ratas , Animales , Ratas Sprague-Dawley , Exposición por Inhalación/efectos adversos , Neumonía/inducido químicamente , Fibrosis , Polvo , Citocinas/metabolismo , Macrófagos/metabolismo , Carbón Mineral
6.
Mol Pharm ; 21(8): 3979-3991, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38935927

RESUMEN

Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.


Asunto(s)
Neumonía , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Ratones , Neumonía/diagnóstico por imagen , Neumonía/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Distribución Tisular , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Radioisótopos de Flúor , Humanos , Masculino , Ratones Endogámicos C57BL , Pulmón/diagnóstico por imagen , Pulmón/metabolismo
7.
Environ Sci Technol ; 58(20): 8643-8653, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38676641

RESUMEN

Antimicrobial nanomaterials frequently induce inflammatory reactions within lung tissues and prompt apoptosis in lung cells, yielding a paradox due to the inherent anti-inflammatory character of apoptosis. This paradox accentuates the elusive nature of the signaling cascade underlying nanoparticle (NP)-induced pulmonary inflammation. In this study, we unveil the pivotal role of nano-microflora interactions, serving as the crucial instigator in the signaling axis of NP-induced lung inflammation. Employing pulmonary microflora-deficient mice, we provide compelling evidence that a representative antimicrobial nanomaterial, silver (Ag) NPs, triggers substantial motility impairment, disrupts quorum sensing, and incites DNA leakage from pulmonary microflora. Subsequently, the liberated DNA molecules recruit caspase-1, precipitating the release of proinflammatory cytokines and activating N-terminal gasdermin D (GSDMD) to initiate pyroptosis in macrophages. This pyroptotic cascade culminates in the emergence of severe pulmonary inflammation. Our exploration establishes a comprehensive mechanistic axis that interlinks the antimicrobial activity of Ag NPs, perturbations in pulmonary microflora, bacterial DNA release, macrophage pyroptosis, and consequent lung inflammation, which helps to gain an in-depth understanding of the toxic effects triggered by environmental NPs.


Asunto(s)
Neumonía , Piroptosis , Piroptosis/efectos de los fármacos , Ratones , Animales , Neumonía/inducido químicamente , Neumonía/patología , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Macrófagos/efectos de los fármacos , Inflamación
8.
Environ Sci Technol ; 58(35): 15511-15521, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39145585

RESUMEN

Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.


Asunto(s)
Contaminantes Atmosféricos , Ratones , Animales , Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Multiómica
9.
Int J Med Sci ; 21(1): 107-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164360

RESUMEN

NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.


Asunto(s)
Musa , Neumonía , Ratones , Humanos , Animales , FN-kappa B , Poli I-C/farmacología , Poli I-C/uso terapéutico , Interleucina-10 , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Quimiocinas , Antiinflamatorios/uso terapéutico
10.
J Nanobiotechnology ; 22(1): 428, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030581

RESUMEN

BACKGROUND: The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS: Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS: Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Cobre , Metaloproteinasa 3 de la Matriz , Neumonía , Fibrosis Pulmonar , Animales , Cobre/toxicidad , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Neumonía/inducido químicamente , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Líquido del Lavado Bronquioalveolar/química , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/efectos de los fármacos , Masculino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
11.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125954

RESUMEN

In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.


Asunto(s)
Citocinas , Ratones Endogámicos ICR , Péptidos , Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Ratones , Masculino , Citocinas/metabolismo , Péptidos/farmacología , Péptidos/química , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo
12.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791399

RESUMEN

Oxylipins, the metabolites of polyunsaturated fatty acids, are vital in regulating cell proliferation and inflammation. Among these oxylipins, specialized pro-resolving mediators notably contribute to inflammation resolution. Previously, we showed that the specialized pro-resolving mediators isomer 11,17dihydroxy docosapentaenoic acid (11,17diHDoPE) can be synthesized in bacterial cells and exhibits anti-inflammatory effects in mammalian cells. This study investigates the in vivo impact of 11,17diHDoPE in mice exposed to particulate matter 10 (PM10). Our results indicate that 11,17diHDoPE significantly mitigates PM10-induced lung inflammation in mice, as evidenced by reduced pro-inflammatory cytokines and pulmonary inflammation-related gene expression. Metabolomic analysis reveals that 11,17diHDoPE modulates inflammation-related metabolites such as threonine, 2-keto gluconic acid, butanoic acid, and methyl oleate in lung tissues. In addition, 11,17diHDoPE upregulates the LA-derived oxylipin pathway and downregulates arachidonic acid- and docosahexaenoic acid-derived oxylipin pathways in serum. Correlation analyses between gene expression and metabolite changes suggest that 11,17diHDoPE alleviates inflammation by interfering with macrophage differentiation. These findings underscore the in vivo role of 11,17diHDoPE in reducing pulmonary inflammation, highlighting its potential as a therapeutic agent for respiratory diseases.


Asunto(s)
Antiinflamatorios , Ácidos Grasos Insaturados , Metaboloma , Material Particulado , Neumonía , Animales , Ratones , Metaboloma/efectos de los fármacos , Neumonía/metabolismo , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Material Particulado/toxicidad , Antiinflamatorios/farmacología , Ácidos Grasos Insaturados/metabolismo , Masculino , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Metabolómica/métodos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
13.
Inflammopharmacology ; 32(3): 1743-1757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568399

RESUMEN

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.


Asunto(s)
Bencilisoquinolinas , Inflamación , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Humanos , Animales , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal/efectos de los fármacos
14.
Inflammopharmacology ; 32(2): 1059-1076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310155

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1ß, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.


Asunto(s)
FN-kappa B , Neumonía , Quercetina , Animales , Ratones , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neumonía/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pseudomonas aeruginosa/metabolismo , Quercetina/farmacología , Transducción de Señal
15.
Respir Res ; 24(1): 33, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707853

RESUMEN

Pulmonary inflammation involves complex changes of the immune cells, in which macrophages play important roles and their function might be influenced by metabolism. Slc38a6 acts as a carrier of nutrient for macrophages (Mφ) to exert the function. In this study, pneumonia patient blood was found up-regulated SLC38A6 expression, which correlated with monocytes number and white blood cell number. The similar result was also shown in LPS induced sepsis mice. To reveal the key role of Slc38a6, we used systemic and conditional knock-out mice. Either systemic or LyzCRE specific knock-out could alleviate the severity of sepsis mice, reduce the proinflammatory cytokine TNF-α and IL-1ß expression in serum and decrease the monocytes number in bronchial alveolar lavage and peritoneal lavage via flow cytometry. In order to reveal the signal of up-regulated Slc38a6, the Tlr4 signal inhibitor TAK242 and TLR4 knock-out mice were used. By blocking Tlr4 signal in macrophages via TAK242, the expression of Slc38a6 was down-regulated synchronously, and the same results were also found in Tlr4 knock-out macrophages. However, in the overexpressed Slc38a6 macrophages, blocking Tlr4 signal via TAK242, 20% of the mRNA expression of IL-1ß still could be expressed, indicating that up-regulated Slc38a6 participates in IL-1ß expression process. Collectively, it is the first time showed that an amino acid transporter SLC38A6 up-regulated in monocytes/macrophages promotes activation in pulmonary inflammation. SLC38A6 might be a promising target molecule for pulmonary inflammation treatment.


Asunto(s)
Neumonía , Receptor Toll-Like 4 , Animales , Ratones , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Transducción de Señal/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
16.
Respir Res ; 24(1): 288, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978525

RESUMEN

BACKGROUND: We have reported a positive correlation between S100 calcium-binding protein (S100) A8/S100A9 and sepsis-induced lung damage before. However, limited knowledge exists concerning the biological role of S100A8/A9 in pulmonary vascular endothelial barrier dysfunction, as well as the diagnostic value of S100A8/A9 in sepsis. METHODS: Sepsis was induced in C57BL/6J mice and S100A9-knockout (KO) mice through the cecal ligation and puncture (CLP). Pulmonary vascular leakage was determined by measuring extravasated Evans blue (EB). Reverse transcription polymerase chain reaction and the histological score were used to evaluate inflammation and lung injury, respectively. Recombinant S100A8/A9 (rhS100A8/A9) was used to identify the effects of S100A8/A9 on endothelial barrier dysfunction in human umbilical vein endothelial cells (HUVECs). Additionally, the diagnostic value of S100A8/A9 in sepsis was assessed using receiver operating characteristic. RESULTS: S100A8/A9 expression was up-regulated in the lungs of CLP-operated mice. S100A9 KO significantly reversed CLP-induced hypothermia and hypotension, resulting in an improved survival rate. S100A9 KO also decreased the inflammatory response, EB leakage, and histological scores in the lungs of CLP-operated mice. Occludin and VE-cadherin expressions were decreased in the lungs of CLP-operated mice; However, S100A9 KO attenuated this decrease. Moreover, CLP-induced signal transducer and activator of transcription 3 (STAT3) and p38/extracellular signal-regulated kinase (ERK) signalling activation and apoptosis were mitigated by S100A9 KO in lungs. In addition, rhS100A8/A9 administration significantly decreased occludin and VE-cadherin expressions, increased the phosphorylated (p)-ERK/ERK, p-p38/p38, and B-cell leukaemia/lymphoma 2 protein (Bcl-2)-associated X protein/Bcl-2 ratios in HUVECs. CONCLUSION: The present study demonstrated S100A8/A9 aggravated sepsis-induced pulmonary inflammation, vascular permeability, and lung injury. This was achieved, at least partially, by activating the P38/STAT3/ERK signalling pathways. Moreover, S100A8/A9 showed the potential as a biomarker for sepsis diagnosis.


Asunto(s)
Lesión Pulmonar , Sepsis , Ratones , Animales , Humanos , Ocludina , Ratones Endogámicos C57BL , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Pulmón/metabolismo , Ratones Noqueados , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
Virol J ; 20(1): 262, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957672

RESUMEN

Influenza is an acute viral respiratory illness with high morbidity rates worldwide. Excessive pulmonary inflammation is the main characteristic of lethal influenza A virus (IAV) infections. Therapeutic options for managing influenza are limited to vaccines and some antiviral medications. Phillyrin is one of the major bioactive components of the Chinese herbal medicine Forsythia suspensa, which has the functions of sterilization, heat clearing and detoxification. In this work, the effect and mechanism of phillyrin on H1N1 influenza (PR8)-induced pneumonia were investigated. We reported that phillyrin (15 mg/kg) treatment after viral challenge significantly improved the weight loss, ameliorated pulmonary inflammation and inhibited the accumulation of multiple cytokines and chemokines in bronchoalveolar lavage fluid on 7 days post infection (dpi). In vitro, phillyrin suppressed influenza viral replication (Matrixprotein and nucleoprotein messenger RNA level) and reduced influenza virus-induced cytopathic effect (CPE). Furthermore,chemokine receptor CXCR2 was confirmed to be markedly inhibited by phillyrin. Surface plasmon resonance results reveal that phillyrin exhibits binding affinity to CXCR2, having a binding affinity constant (KD) value of 1.858e-5 M, suggesting that CXCR2 is a potential therapeutic target for phillyrin. Moreover, phillyrin inhibited the mRNA and protein expression levels of Caspase1, ASC and NLRP3 in the lungs of mice with H1N1-induced pneumonia.This study reveals that phillyrin ameliorates IAV-induced pulmonary inflammation by antagonizing CXCR2 and inhibiting NLRP3 inflammasome activation partly.


Asunto(s)
Infecciones por Orthomyxoviridae , Neumonía Viral , Animales , Ratones , Inflamasomas/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía Viral/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico
18.
J Biochem Mol Toxicol ; 37(12): e23494, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37563788

RESUMEN

Particulate matter (PM) 2.5 has long been regarded as a major risk factor of the respiratory system, which constitutes a threat to human health. Although the positive relationship between PM2.5 exposure and the development of respiratory diseases has been well established, limited studies investigate the intrinsic self-protection mechanisms against PM2.5-induced respiratory injuries. Excessive pulmonary inflammation served as a key pathogenic mechanism in PM2.5-induced airway dysfunction, and we have previously shown that PM2.5 induced the production of vascular endothelial growth factor A (VEGFA) in the bronchial epithelial cells, which subsequently led to pulmonary inflammatory responses. In the current study, we found that PM2.5 also concurrently induced the expression of the stress-responsive protein heme oxygenase-1 (HO-1) along with VEGFA in the bronchial epithelial cells both in vivo and in vitro. Importantly, knocking down of HO-1 expression significantly increased the synthesis and secretion of VEGFA; while overexpression of HO-1 showed the opposite effects, indicating that HO-1 induction can antagonize VEGFA production in the bronchial epithelial cells upon PM2.5 exposure. Mechanistically, HO-1 inhibited PM2.5-evoked VEGFA induction through modulating hypoxia-inducible factor 1 alpha (HIF-1α), which was the upstream transcriptional factor of VEGFA. More specifically, HO-1 could not only inhibit HIF-1α expression, but also suppress its transactivity. Taken together, our results suggested that HO-1 was an intrinsic protective factor against PM2.5-induced pulmonary VEGFA production with a mechanism relating to HIF-1α, thus providing a potential treatment strategy against PM2.5 triggered airway injuries.


Asunto(s)
Hemo-Oxigenasa 1 , Factor A de Crecimiento Endotelial Vascular , Humanos , Hemo-Oxigenasa 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pulmón/metabolismo , Células Epiteliales/metabolismo , Material Particulado/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia
19.
J Nanobiotechnology ; 21(1): 156, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208676

RESUMEN

The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV. SyBV were generated from bacterial membranes through treatment with detergent and ionic stress. SyBV induced less inflammatory responses in macrophages and in mice compared to natural OMV. Immunization with SyBV or OMV induced comparable antigen-specific adaptive immunity. Specifically, immunization with Pseudomonas aeruginosa-derived SyBV protected mice against bacterial challenge, and this was accompanied by significant reduction in lung cell infiltration and inflammatory cytokines. Further, immunization with Escherichia coli-derived SyBV protected mice against E. coli sepsis, comparable to OMV-immunized group. The protective activity of SyBV was driven by the stimulation of B-cell and T-cell immunity. Also, SyBV were engineered to display the SARS-CoV-2 S1 protein on their surface, and these vesicles induced specific S1 protein antibody and T-cell responses. Collectively, these results demonstrate that SyBV may be a safe and efficient vaccine platform for the prevention of bacterial and viral infections.


Asunto(s)
Bacteriemia , COVID-19 , Infecciones por Escherichia coli , Vacunas , Ratones , Animales , Humanos , SARS-CoV-2 , Escherichia coli , COVID-19/prevención & control , Bacterias , Infecciones por Escherichia coli/prevención & control , Proteínas de la Membrana Bacteriana Externa , Anticuerpos Antibacterianos
20.
J Toxicol Environ Health A ; 86(20): 758-773, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37527000

RESUMEN

Potentilla rugulosa Nakai (P. rugulosa) is a perennial herb in the Rosaceae family and found in the Korean mountains. Previously, our findings demonstrated that P. rugulosa contains numerous polyphenols and flavonoids exhibiting important antioxidant and anti-obesity bioactivities. Bisphenol A (BPA) is a xenoestrogen that was shown to produce pulmonary inflammation in humans. However, the mechanisms underlying BPA-induced inflammation remain to be determined. The aim of this study was to examine whether ethanolic extract of P. rugulosa exerted an inhibitory effect on BPA-induced inflammation utilizing an adenocarcinoma human alveolar basal epithelial cell line A549. The P. rugulosa extract inhibited BPA-mediated cytotoxicity by reducing levels of reactive oxygen species (ROS). Further, P. rugulosa extract suppressed the upregulation of various pro-inflammatory mediators induced by activation of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, inhibition of the NF-κB and MAPK signaling pathways by P. rugulosa extract was found to occur via decrease in the transcriptional activity of NF-κB. Further, blockade of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) was noted. Thus, our findings suggest that the ethanolic extract of P. rugulosa may act as a natural anti-inflammatory therapeutic agent.


Asunto(s)
FN-kappa B , Potentilla , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Potentilla/metabolismo , Células A549 , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , República de Corea , Lipopolisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA