Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant J ; 115(4): 1114-1133, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177908

RESUMEN

Dendrobium officinale is edible and has medicinal and ornamental functions. Polysaccharides and flavonoids, including anthocyanins, are important components of D. officinale that largely determine the nutritional quality and consumer appeal. There is a need to study the molecular mechanisms regulating anthocyanin and polysaccharide biosynthesis to enhance D. officinale quality and its market value. Here, we report that high light (HL) induced the accumulation of polysaccharides, particularly mannose, as well as anthocyanin accumulation, resulting in red stems. Metabolome and transcriptome analyses revealed that most of the flavonoids showed large changes in abundance, and flavonoid and polysaccharide biosynthesis was significantly activated under HL treatment. Interestingly, DoHY5 expression was also highly induced. Biochemical analyses demonstrated that DoHY5 directly binds to the promoters of DoF3H1 (involved in anthocyanin biosynthesis), DoGMPP2, and DoPMT28 (involved in polysaccharide biosynthesis) to activate their expression, thereby promoting anthocyanin and polysaccharide accumulation in D. officinale stems. DoHY5 silencing decreased flavonoid- and polysaccharide-related gene expression and reduced anthocyanin and polysaccharide accumulation, whereas DoHY5 overexpression had the opposite effects. Notably, naturally occurring red-stemmed D. officinale plants similarly have high levels of anthocyanin and polysaccharide accumulation and biosynthesis gene expression. Our results reveal a previously undiscovered role of DoHY5 in co-regulating anthocyanin and polysaccharide biosynthesis under HL conditions, improving our understanding of the mechanisms regulating stem color and determining nutritional quality in D. officinale. Collectively, our results propose a robust and simple strategy for significantly increasing anthocyanin and polysaccharide levels and subsequently improving the nutritional quality of D. officinale.


Asunto(s)
Dendrobium , Flavonoides , Flavonoides/metabolismo , Antocianinas/metabolismo , Dendrobium/genética , Dendrobium/química , Dendrobium/metabolismo , Polisacáridos/metabolismo , Perfilación de la Expresión Génica
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621872

RESUMEN

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Asunto(s)
Fitomejoramiento , Espectrometría de Masas en Tándem , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621898

RESUMEN

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Asunto(s)
Plaguicidas , Plantas Medicinales , Fertilizantes , Agricultura , Suelo/química , Bacterias/genética , Extractos Vegetales , Microbiología del Suelo
4.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114208

RESUMEN

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Filogenia , Plantas Medicinales/química , Medicina Tradicional China , Fenotipo
5.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806406

RESUMEN

Sweet cherries are economically important fruit trees, and their quality changes during development need to be determined. The mechanism of fruit quality changes in sweet cherries were determined by analyzing sweet cherry fruits at 12 developmental stages. The results showed that the soluble sugar, anthocyanin content, and hormones of sweet cherries all changed drastically during the color transition. Therefore, the fruits at the beginning of color conversion, at the end of color conversion, and at the ripening state were selected for the comprehensive analysis of their metabolome and transcriptome. Different sugars, such as D-glucose, sucrose, and trehalose, were identified in the metabolome. Dihydroquercetin, delphinidin-3-glucoside, cyanidin-3-rutincoside, and other flavonoid species were also identified. D-glucose and cyanidin-3-rutinoside were among the most important components of sweet cherry soluble sugars and anthocyanins, respectively. The transcriptional analysis identified key structural genes and nine transcription factors involved in the ABA, sugar, organic acid, and anthocyanin synthesis pathways, with the following specific regulatory patterns. NAC71, WRKY57, and WRKY3 regulate fruit sugar accumulation mainly by acting on INV, SPS, and SUS. MYC2 is involved in the synthesis of anthocyanin precursors by activating PAL and C4H, whereas TCP7 mainly regulates CHI and F3H. WRKY3, NAC71, and WRKY57 have important positive regulatory significance on anthocyanin accumulation, mainly by activating the expression of DFR, ANS, and 3GT.


Asunto(s)
Antocianinas , Prunus avium , Frutas/química , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Proteínas de Plantas/metabolismo , Prunus avium/metabolismo , Azúcares/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628266

RESUMEN

Tangor, an important citrus type, is a hybrid of orange and mandarin and possesses their advantageous characteristics. Fruit quality is an important factor limiting the development of the citrus industry and highly depends on fruit development and ripening programs. However, fruit development and quality formation have not been completely explored in mandarin-orange hybrids. We sequenced the metabolome and transcriptome of three mandarin-orange hybrid cultivars at the early fruiting [90 days after full bloom (DAFB)], color change (180 DAFB), and ripening (270 DAFB) stages. Metabolome sequencing was performed to preliminarily identify the accumulation patterns of primary and secondary metabolites related to fruit quality and hormones regulating fruit development. Transcriptome analysis showed that many genes related to primary metabolism, secondary metabolism, cell wall metabolism, phytohormones, and transcriptional regulation were up-regulated in all three cultivars during fruit development and ripening. Additionally, multiple key genes were identified that may play a role in sucrose, citric acid and flavonoid accumulation, cell wall modification, and abscisic acid signaling, which may provide a valuable resource for future research on enhancement of fruit quality of hybrid citrus. Overall, this study provides new insights into the molecular basis of pulp growth and development regulation and fruit quality formation in mandarin-orange hybrids.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo , Metaboloma , Transcriptoma
7.
Compr Rev Food Sci Food Saf ; 21(6): 4546-4572, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201379

RESUMEN

Pu-erh tea belongs to dark tea among six major teas in China. As an important kind of post-fermented tea with complex microbial composition, Pu-erh tea is highly praised by many consumers owing to its unique and rich flavor and taste. In recent years, Pu-erh tea has exhibited various physiological activities to prevent and treat metabolic diseases. This review focuses on the fungi in Pu-erh tea and introduces the sources, types, and functions of fungi in Pu-erh tea, as well as the influence on the quality of Pu-erh tea and potential safety risks. During the process of fermentation and aging of Pu-erh tea, fungi contribute to complex chemical changes in bioactive components of tea. Therefore, we examine the important role that fungi play in the quality formation of Pu-erh tea. The associations among the microbial composition, chemicals excreted, and potential food hazards are discussed during the pile-fermentation of Pu-erh tea. The quality of Pu-erh tea has exhibited profound changes during the process of pile-fermentation, including color, aroma, taste, and the bottom of the leaves, which are inseparable from the fungus in the pile-fermentation of Pu-erh tea. Specifically, the application prospects of various detection methods of mycotoxins in assessing the safety of Pu-erh tea are proposed. This review aims to fully understand the importance of fungi in the production of Pu-erh tea and further provides new insights into subtly regulating the piling process to improve the nutritional properties and guarantee the safety of Pu-erh tea.


Asunto(s)
Micobioma , , Té/química , Hongos , Fermentación , Hojas de la Planta/química
8.
BMC Plant Biol ; 21(1): 293, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34171994

RESUMEN

BACKGROUND: Atractylodes lancea (Thunb.) DC, a medicinal herb belonging to the Asteraceae family, often faces severe drought stress during its growth. Until now, there has been no research on the effect of drought stress on the quality formation of A. lancea. Therefore, the present study aimed to study the effects of drought stress on A. lancea through physical and chemical analysis, and to reveal the related molecular mechanisms via transcriptome analysis. RESULTS: The photosynthesis was markedly inhibited under drought stress. There were alterations to photosynthetic parameters (Pn, Gs, Ci) and chlorophyll fluorescence (Fv/Fm, NPQ), and the chlorophyll content decreased. Twenty genes encoding important regulatory enzymes in light and dark reactions, including the Rubisco gene of the Calvin cycle, were significantly downregulated. After exposure to drought stress for more than 4 days, the activities of four antioxidative enzymes (SOD, POD CAT and APX) began to decrease and continued to decrease with longer stress exposure. Meanwhile, most of the genes encoding antioxidative enzymes were downregulated significantly. The downregulation of 21 genes related to the respiratory electron transport chain indicated that the blocked electron transfer accelerated excessive ROS. The MDA content was significantly elevated. The above data showed that 15 days of drought stress caused serious oxidative damage to A. lancea. Drought stress not only reduced the size and dry weight of A. lancea, but also lowered the amount of total volatile oil and the content of the main bioactive components. The total volatile oil and atractylodin content decreased slightly, whereas the content of atractylon and ß-eudesmol decreased significantly. Moreover, ten significantly downregulated genes encoding sesquiterpene synthase were mainly expressed in rhizomes. CONCLUSIONS: After exposed to drought stress, the process of assimilation was affected by the destruction of photosynthesis; stress tolerance was impaired because of the inhibition of the antioxidative enzyme system; and bioactive component biosynthesis was hindered by the downregulation of sesquiterpene synthase-related gene expression. All these had negative impacts on the quality formation of A. lancea under drought stress.


Asunto(s)
Antioxidantes/metabolismo , Atractylodes/fisiología , Fotosíntesis , Transcriptoma , Atractylodes/metabolismo , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Zhongguo Zhong Yao Za Zhi ; 45(19): 4555-4560, 2020 Oct.
Artículo en Zh | MEDLINE | ID: mdl-33164418

RESUMEN

Since the first separation, protoplasts have played an important role in basic and applied research of plant biology and molecular biology. There are a lot of reports on protoplast preparation and transformation, especially in the selection of explants, enzymatic environment and transformation mode. Protoplasts have also been widely used in gene expression and regulation, especially in subcellular localization, protein interaction and promoter activity. In this paper, the preparation and transformation of protoplasts and the related research reports in gene expression and regulation are reviewed. The research status of protoplast in the molecular mechanism analysis of quality formation of traditional Chinese medicine is summarized. At the same time, the researches of protoplast in the molecular mechanism research of quality formation of traditional Chinese medicine are prospected. Firstly, we should further strengthen the exploration of protoplast preparation and transformation conditions of different traditional Chinese medicine resources. Secondly, we should further strengthen the research on quality formation related functional genes by using protoplast. Third, we should further make the study on the molecular regulation of quality formation of traditional Chinese medicine by protoplast. This paper attempts to provide a new way of thinking and technical method for the analysis of molecular mechanism of traditional Chinese medicine quality formation in the future.


Asunto(s)
Medicina Tradicional China , Protoplastos , Expresión Génica , Regiones Promotoras Genéticas
10.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1633-1640, 2020 Apr.
Artículo en Zh | MEDLINE | ID: mdl-32489043

RESUMEN

According to the major differences of agricultural characters among various Aconitum carmichaelii cultivars, the lateral roots of Ai-leaf and Dahua-leaf A.carmichaelii plants were selected as the research objects. And the Illumina Hiseq high-throughput platform was used for transcriptome sequencing, assembly and annotation. We mostly focused the activity differential transcripts, metabolism pathways and enrichment functions. The results showed that a total of 52.23 Gb nucleotide bases were obtained from 6 A.carmichaelii transcriptome databases, with 52 471 unigenes and 28 765 matched annotation. There were 1 052 transcripts of the two kinds of A.carmichaelii with a difference of more than 2 times, 808 of which were annotated. Through GO and COG analysis, they were found to mainly concentrate in metabolic processes, cell processes, catalytic processes and transport processes, connections and other functions. KEGG analysis showed that 262 DEGs were enriched in 78 metabolic pathways, such as starch and sucrose metabolism, plant hormone signaling, carbon compounded transport etc. It was implied that many genes in Dahua-leaf A.carmichaelii regulated the conversion of starch to small molecules such as sucrose, glucose and maltose, while some other genes regulated the accumulation of amino acids, which may be the important biological principles for the formation of the differences between the quality and disease resistance of two leaf types of A.carmichaelii. This study will provide reference datas for A.carmichaelii breeding research.


Asunto(s)
Aconitum , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular
11.
Molecules ; 24(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640173

RESUMEN

Bombyx batryticatus is a well-known animal in traditional Chinese medicine. The aim of the research was to reveal the quality formation mechanism of B. batryticatus and to screen out the characteristic component used for the quality control. The anticonvulsant effects of B. batryticatus with a stiff time of one, five, and nine days (D1, D5 and D9, respectively) and healthy silkworm of the same developmental stage (SW) were determined by animal experiment. The dynamic changes in chemical composition were analyzed using UPLC-Q-TOF-MS-based metabolomics. D5 and D9 B. batryticatus exhibited significant anticonvulsant effects (p < 0.05 and p < 0.01, respectively). Accordingly, principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA) indicated that the chemical composition of D5 and D9 B. batryticatus changed significantly. The different metabolites mainly consisted of primary metabolites such as lipids and amino acids and secondary metabolites such as flavonoids, beauvericin, and glycolipids. Interestingly, the relative abundance of quercetin-7-O-ß-d-4-O-methylglucoside, the characteristic component of B. batryticatus, increased with stiff time and was promised to be used as an index component of quality control. The results expand our understanding of the quality formation mechanism of B. batryticatus. In addition, it highlights the potential of UPLC-Q-TOF-MS-based metabolomics for the quality control purpose of TCMs.


Asunto(s)
Bombyx/fisiología , Metabolómica/métodos , Metilglucósidos/análisis , Animales , Anticonvulsivantes , Bombyx/química , Bombyx/microbiología , Cromatografía Líquida de Alta Presión , Análisis de los Mínimos Cuadrados , Espectrometría de Masas , Metilglucósidos/química , Análisis de Componente Principal , Quercetina , Metabolismo Secundario
12.
Planta ; 248(4): 769-784, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066218

RESUMEN

MAIN CONCLUSION: This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n = 38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.


Asunto(s)
Dendrobium/genética , Genoma de Planta/genética , Genómica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Dendrobium/clasificación , Dendrobium/fisiología , Genoma del Cloroplasto/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas Medicinales , Reproducción , Análisis de Secuencia de ADN
13.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2407-2412, 2018 Jun.
Artículo en Zh | MEDLINE | ID: mdl-29945399

RESUMEN

Dao-di herbs have been recognized as "quality models" with a firmly stable status. The formation of Dao-di herbs quality is involved from the genetic inheritance on the molecular level to the metabolic phenotype of final products, and the full material-based biosynthetic pathway remains unknown. In recent years, an increasing variety of omics technologies has provided new methods and ideas for the analysis of complex life systems and are suitable for explanation of quality formation in Dao-di herbs as well. In order to alleviate the scarcity of natural resources and offer scientific guidance of transplanting varieties, achievements of omics in the aspects of Dao-di herbs from genetics to phenotyping, the biosynthetic pathway of secondary metabolites, the interaction with human body and the new methods of quality evaluation have been summarized. It will be a fundamental work for protection and utilization of Chinese medicine resources.


Asunto(s)
Medicamentos Herbarios Chinos , Genómica , Medicina Tradicional China , Metabolómica , Humanos , Fenotipo , Investigación , Metabolismo Secundario , Tecnología
14.
Chin Herb Med ; 16(2): 180-189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38706829

RESUMEN

Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.

15.
Food Res Int ; 178: 113979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309920

RESUMEN

The distinct sensory quality of Qingzhuan tea is mainly formed in pile fermentation by a group of functional microorganisms but the core functional ones was poorly characterized. Therefore, this study investigated the dynamic changes in the fungal community and metabolic profile by integrating microbiomics and metabolomics, and explored the core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Indicated by microbiomics analysis, Aspergillus dominated the entire pile-fermentation process, while Thermoascus, Rasamsonia, and Cylindrium successively abounded in the different stages of the pile fermentation. A total of 50 differentially changed metabolites were identified, with the hydrolysis of galloyl/polymeric catechins, biosynthesis of theabrownins, oxidation of catechins, N-ethyl-2-pyrrolidinone substitution of catechins, and deglycosylation of flavonoid glucosides. Nine fungal genera were identified as core functional fungi, in which Aspergillus linked to the hydrolysis of polymeric catechins and insoluble polysaccharides as well as biosynthesis of theabrownins, while Thermoascus participated in the biosynthesis of theabrownins, deglycosylation of flavonoid glucosides, and N-ethyl-2-pyrrolidinone substitution of catechins. These findings would advance our understanding of the quality formation of Qingzhuan tea and provide a benchmark for precise inoculation for its quality improvement.


Asunto(s)
Catequina , , Té/microbiología , Fermentación , Flavonoides/metabolismo , Catequina/análisis , Aspergillus/metabolismo , Glucósidos
16.
Front Microbiol ; 15: 1435765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040905

RESUMEN

Introduction: Fengxiangxing Huairang Daqu (FHD) is one of the major types of Daqu in China. However, the relationship between the microbial community structure at different stages, the changes in the sensory characteristics, fermentation characteristics, volatiles, the most critical process point, and the quality formation of FHD is not clear. Methods: Based on microscopic characterization, PacBio SMRT sequencing, and HS-SPME-GC-MS volatile metabolite analysis revealed the relationship between FHD quality formation and the dynamics of Qupi. Results: The results showed that the 12th day of the culture was the most critical process point, highlighting the most significant differences in microbial community structure, sensory characteristics, fermentation characteristics, and flavor substances. Bacillus licheniformis (43.25%), Saccharopolyspora rectivirgula (35.05%), Thermoascus aurantiacus (76.51%), Aspergillus amstelodami (10.81%), and Saccharomycopsis fibuligera (8.88%) were the dominant species in FHD. S. fibuligera, A. amstelodami, and T. aurantiacus were associated with the snow-white color of the FHD epidermis, the yellow color of the interior, and the gray-white color, respectively. The abundance of T. aurantiacus, A. amstelodami, B. licheniformis, and S. rectivirgula was positively associated with the esterifying power and liquefying power of FHD. The abundance of T. aurantiacus and A. amstelodami was positively correlated with the saccharifying power of FHD. The abundance of S. fibuligera was positively related to the fermenting power of FHD. A total of 248 volatiles were detected in Qupi, mainly including alcohols, esters, aldehydes, and ketones. Of them, eleven volatiles had a significant effect on the flavor of Qupi, such as 1-butanol-3-methyl-, hydrazinecarboxamide, ethanol, phenylethyl alcohol, ethyl acetate, 2-octanone, 1-octen-3-ol, formic acid-hexyl ester, (E)-2-octen-1-ol, ethyl hexanoate, and 2(3H)-furanone-dihydro-5-pentyl-. The abundance of B. licheniformis, S. rectivirgula, T. aurantiacus, and S. fibuligera was positively correlated with the alcohols, aromatic compounds, and phenols in FHD. The abundance of S. fibuligera was positively correlated with the acids, esters, and hydrocarbons in FHD. Discussion: These results indicate important theoretical basis and technical support for controllable adjustment of FHD microbial community structure, stable control of FHD quality, and precise, effective, and large-scale guidance of FHD production.

17.
J Adv Res ; 53: 33-47, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36529351

RESUMEN

INTRODUCTIONS: Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES: The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS: We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS: The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION: Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.


Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Etilenos/metabolismo , Etilenos/farmacología
18.
Plants (Basel) ; 12(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375910

RESUMEN

The original plant of Chinese medicine Stellariae Radix (Yin Chai Hu) is Stellaria dichotoma L. var. lanceolata Bge (abbreviated as SDL). SDL is a perennial herbaceous plant and a characteristic crop in Ningxia. Growth years are vital factors that affect the quality of perennial medicinal materials. This study aims to investigate the impact of growth years on SDL and screen for the optimal harvest age by comparing the medicinal material characteristics of SDL with different growth years. Additionally, metabolomics analysis using UHPLC-Q-TOF MS was employed to investigate the impact of growth years on the accumulation of metabolites in SDL. The results show that the characteristics of medicinal materials and the drying rate of SDL gradually increase with the increase in growth years. The fastest development period of SDL occurred during the first 3 years, after which the development slowed down. Medicinal materials characteristics of 3-year-old SDL exhibited mature qualities with a high drying rate, methanol extract content, and the highest content of total sterols and total flavonoids. A total of 1586 metabolites were identified, which were classified into 13 major classes with more than 50 sub-classes. Multivariate statistical analysis indicated significant differences in the diversity of metabolites of SDL in different growth years, with greater differences observed in metabolites as the growth years increased. Moreover, different highly expressed metabolites in SDL at different growth years were observed: 1-2 years old was beneficial to the accumulation of more lipids, while 3-5 years old was conducive to accumulating more alkaloids, benzenoids, etc. Furthermore, 12 metabolites accumulating with growth years and 20 metabolites decreasing with growth years were screened, and 17 significantly different metabolites were noted in 3-year-old SDL. In conclusion, growth years not only influenced medicinal material characteristics, drying rate, content of methanol extract, and total sterol and flavonoid contents, but also had a considerable effect on SDL metabolites and metabolic pathways. SDL planted for 3 years presented the optimum harvest time. The screened significantly different metabolites with biological activity, such as rutin, cucurbitacin e, isorhamnetin-3-o-glucoside, etc., can be utilized as potential quality markers of SDL. This research provides references for studying the growth and development of SDL medicinal materials, the accumulation of metabolites, and the selection of optimal harvest time.

19.
Food Chem X ; 17: 100626, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36974175

RESUMEN

Zao Chili (ZC) is a traditional fermented pepper, which plays an important role in Chinese cooking. The aim of this study was to elucidate the effect of Lactipllantbacillus plantarum 5-1 on the physicochemical properties, metabolite and microbiota profiling of ZC. The physicochemical factors changed regularly with the fermentation time. In the microbial communities, Lactobacillus, Weissella, Enterobacter, Gibberella, Fusarium, Zygosaccharomyces and Pichia were the dominant genera. 7 kinds of organic acids were detected in the whole fermentation process of ZC, but only 5 kinds changed significantly. Based on the OPLS-DA model with VIP > 1 and ANOVA with P < 0.05, 33 volatile flavor compounds with significant differences were screened out of 89. According to the redundancy analysis (RDA), fungi mainly contributed to soluble solids, while bacteria mainly contributed to pH. Lactobacillus, Weissella, Enterbacter and Zygosaccharomyces may be the potential flavor contributing microorganisms in the fermentation process of ZC by the Spearman correlation coefficient. A total of 11 main metabolic pathways were obtained by KEGG enrichment analysis of 89 volatile flavor compounds and 7 organic acids. Therefore, this study further enhanced our understanding of the flavor quality formation mechanism of Lactipllantbacillus plantarum in ZC, and providing a theoretical basis for improving the flavor quality of ZC.

20.
Gene Expr Patterns ; 45: 119260, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760355

RESUMEN

Walnuts (including those covered with a pellicle) are loved for their rich nutritional value. And the popular varieties of walnut cultivation are Juglans sigillata L. The pellicle (seed coat) of these walnut cultivars has different colors and has an indispensable influence on the walnut quality formation. However, there are few reports on the pellicle color and quality formation in different developmental stages of walnut (Juglans sigillata L.). Therefore, in this study, three walnut cultivars (F, Q, and T) with different pellicle colors were selected for transcriptome sequencing and physiological index analysis of the color and quality formation mechanisms at different development stages. The results showed that with the development of walnut fruit, the starch sucrose metabolism pathway in the pellicle was activated and promoted starch hydrolysis. Meanwhile, the expression levels of genes related to the alpha-linolenic acid metabolism pathway were significantly increased during walnut maturation, especially in F2. Some physiological indicators related to lipid oxidation were also detected and analyzed in this study, such as MDA, CAT, POD and DPPH. These results were similar to the expression patterns of corresponding regulatory genes in the RNA-Seq profile. In addition, lignin synthesis genes were up-regulated in the phenylpropanoid metabolic pathway, while key genes enriched in the flavonoid and anthocyanin synthesis pathways were down-regulated. The results were consistent with the results of total anthocyanins and flavonoid content detection during walnut development. Therefore, this experiment suggested that with the maturation of walnut pellicle, the gene expression in the phenylpropanoid metabolic pathway flowed to the branch of lignin synthesis, especially in the Q variety, resulting in lower flavonoid and anthocyanin content at the maturity stage than immature. This is also the main reason for the pale pellicle of the three walnut varieties after mature. The findings of this study showed that changes in the expression levels of regulating genes for lipid, starch, sugar, and flavonoid synthesis during walnut development influenced the accumulation of the related metabolite for walnut quality formation and pellicle color. The results of this experiment provided the molecular basis and reference for the breeding of high nutritional quality walnut varieties.


Asunto(s)
Juglans , Antocianinas , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Juglans/química , Juglans/genética , Juglans/metabolismo , Lignina/metabolismo , Lípidos , Almidón/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA