Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Virus Genes ; 60(1): 97-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198069

RESUMEN

Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV A8 with 4457 nucleotides (nt) was successfully determined, and sequence alignment of the major capsid protein gene suggested that A8 was a UA-type strain, consistent with its intraspecific host specificity. The complete sequence was found to be 80 nt longer at the 5' terminus than the registered sequences of HcRNAV strains (34 and 109), suggesting that FLDS is more reliable for determining the terminal sequence than conventional methods (5' Rapid Amplification of cDNA End). Our study contributes to a better understanding of dinoflagellate-infecting viruses with limited sequence data.


Asunto(s)
Dinoflagelados , Virus ARN , Virus , ARN Bicatenario/genética , Virus/genética , Virus ARN/genética , Dinoflagelados/genética , Alineación de Secuencia , ARN Viral/genética
2.
Mar Drugs ; 22(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921590

RESUMEN

Ichthyotoxic red tide is a problem that the world is facing and needs to solve. The use of antialgal compounds from marine macroalgae to suppress ichthyotoxic red tide is considered a promising biological control method. Antialgal substances were screened and isolated from Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcate, Hizikia fusifarme, Laminaria japonica, Palmaria palmata, and Sargassum sp. to obtain new materials for the development of algaecides against ichthyotoxic red tide microalgae using bioactivity-guided isolation methods. The fractions of seven macroalgae exhibited selective inhibitory activities against Amphidinium carterae and Karenia mikimotoi, of which the ethyl acetate fractions had the strongest and broadest antialgal activities for the two tested red tide microalgae. Their inhibitory effects on A. carterae and K. mikimotoi were even stronger than that of potassium dichromate, such as ethyl acetate fractions of B. purpurea, H. fusifarme, and Sargassum sp. Thin-layer chromatography and ultraviolet spectroscopy were further carried out to screen the ethyl acetate fraction of Sargassum sp. Finally, a new glycolipid derivative, 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol, was isolated and identified from Sargassum sp., and it was isolated for the first time from marine macroalgae. The significant antialgal effects of 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol on A. carterae and K. mikimotoi were determined.


Asunto(s)
Glucolípidos , Floraciones de Algas Nocivas , Microalgas , Algas Marinas , Algas Marinas/química , Glucolípidos/farmacología , Glucolípidos/aislamiento & purificación , Glucolípidos/química , Floraciones de Algas Nocivas/efectos de los fármacos , Microalgas/química , Dinoflagelados/química
3.
J Environ Manage ; 357: 120799, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581895

RESUMEN

Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article uses mixed methods of machine learned topic modeling and inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" bloom were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization. What if all the careful work that resource and environmental managers do can be undone by simple, seemingly uncontroversial words? In an era of increased environmental and marine distress-coupled with short format communication-the ways environmental managers choose their words is crucial, even between ostensibly inconsequential nouns like "red tide" or "algae bloom." Policies and management decisions in the marine environment are driven in part by public sentiment which can grow more intense during hazard events like Harmful Algae Blooms (HABs). The public conversations on social media sites like Twitter (before X) reveal the polarized nature of HABs through nuanced language and sentiment. This article relies on mining social media posts, and uses mixed methods of machine-learned topic modeling and human-driven inductive qualitative coding to describe the ways the long-term 2017-2019 Karenia brevis "red tide" blooms were politicized across Florida's South West coast. It finds that there are topical differences in keywords related to place (e.g. beach, Florida, coast), agent (individual or organization), and epistemic values (reliance on scientific and/or media reports). These topical differences demonstrate different levels of politicization and partisanship in qualitative analysis. Conceptually, this research demonstrates the ways different dimensions of a long-duration marine hazard can be polarized. Regarding management, this research provides insights to political and organizational stakeholders and the gaps in the discourse shaping marine hazards which can be used to strategically guide future social media engagement to manage politicization.


Asunto(s)
Dinoflagelados , Medios de Comunicación Sociales , Humanos , Floraciones de Algas Nocivas , Toxinas Marinas/análisis , Florida
4.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005581

RESUMEN

In the coastal areas of China, the eutrophication of seawater leads to the continuous occurrence of red tide, which has caused great damage to Marine fisheries and aquatic resources. Therefore, the detection and prediction of red tide have important research significance. The rapid development of optical remote sensing technology and deep-learning technology provides technical means for realizing large-scale and high-precision red tide detection. However, the difficulty of the accurate detection of red tide edges with complex boundaries limits the further improvement of red tide detection accuracy. In view of the above problems, this paper takes GOCI data in the East China Sea as an example and proposes an improved U-Net red tide detection method. In the improved U-Net method, NDVI was introduced to enhance the characteristic information of the red tide to improve the separability between the red tide and seawater. At the same time, the ECA channel attention mechanism was introduced to give different weights according to the influence of different bands on red tide detection, and the spectral characteristics of different channels were fully mined to further extract red tide characteristics. A shallow feature extraction module based on Atrous Spatial Pyramid Convolution (ASPC) was designed to improve the U-Net model. The red tide feature information in a multi-scale context was fused under multiple sampling rates to enhance the model's ability to extract features at different scales. The problem of limited accuracy improvement in red tide edge detection with complex boundaries is solved via the fusion of deep and shallow features and multi-scale spatial features. Compared with other methods, the method proposed in this paper achieves better results and can detect red tide edges with complex boundaries, and the accuracy, precision, recall, and F1-score are 95.90%, 97.15%, 91.53%, and 0.94, respectively. In addition, the red tide detection experiments in other regions with relatively concentrated distribution also prove that the method has good applicability.

5.
J Environ Manage ; 325(Pt B): 116616, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327604

RESUMEN

Desktop-based modelling packages presented typical limitations in interactive simulation. This study presents a web-based modelling framework that fully consolidated the simulation work-flow into a WebGIS application, providing a one-step solution for HABs transport simulation within an intuitive and interactive modelling environment. An improved Lagrangian particle-tracking scheme was proposed using fractional Brownian motion technique. The presented model was devoted to quickly forecast the transport pathways in both temporal and spatial dimensions, and evaluate the approximate trends and qualitative understanding of HABs development in data-poor situations. The web modelling platform was developed using multiple open-source JavaScript libraries. The developed WebGIS application provides user-friendly interfaces to prepare inputs, configure simulation settings, visualize, analyse, and validate simulation results within the same framework. The feasibility, capacity, and advantage of the proposed framework were tested and evaluated in a real-world application of red tide transport simulation in the Qinhuangdao coastal waters. The model results showed qualitative agreement with the red tide observed from remote sensing. Our experimental results demonstrated that the developed web-based modelling prototype would present a useful performance for study cases related to HABs transport simulation.


Asunto(s)
Floraciones de Algas Nocivas , Internet , Simulación por Computador , Predicción
6.
Environ Res ; 206: 112598, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953887

RESUMEN

The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 µm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Pared Celular/química , Dinoflagelados , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis
7.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35590834

RESUMEN

In the last decade, there has been a steady stream of information on the methods and techniques available for detecting harmful algae species. The conventional approaches to identify harmful algal bloom (HAB), such as microscopy and molecular biological methods are mainly laboratory-based and require long assay times, skilled manpower, and pre-enrichment of samples involving various pre-experimental preparations. As an alternative, biosensors with a simple and rapid detection strategy could be an improvement over conventional methods for the detection of toxic algae species. Moreover, recent biosensors that involve the use of nanomaterials to detect HAB are showing further enhanced detection limits with a broader linear range. The improvement is attributed to nanomaterials' high surface area to volume ratio, excellent biological compatibility with biomolecules, and being capable of amplifying the electrochemical signal. Hence, this review presents the potential usage of biosensors over conventional methods to detect HABs. The methods reported for the detection of harmful algae species, ranging from conventional detection methods to current biosensor approaches will be discussed, along with their respective advantages and drawbacks to indicate the future prospects of biosensor technology for HAB event management.


Asunto(s)
Técnicas Biosensibles , Microalgas , Técnicas Biosensibles/métodos , Floraciones de Algas Nocivas
8.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R655-R671, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494485

RESUMEN

White seabass (Atractoscion nobilis) increasingly experience periods of low oxygen (O2; hypoxia) and high carbon dioxide (CO2, hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O2 carrier in the blood and in many teleost fishes Hb-O2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (ß-NHEs). We hypothesized that RBC ß-NHEs in white seabass are an important mechanism that can protect the blood O2-carrying capacity during hypoxia and hypercapnia. We determined the O2-binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of ß-NHE activity on Hb-O2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O2 affinity (Po2 at half-saturation; P50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient -0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed ß-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of ß-NHE activity. The activation of RBC ß-NHEs increased Hb-O2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. ß-NHE activity in white seabass has great potential to protect arterial O2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Lubina/metabolismo , Eritrocitos/efectos de los fármacos , Proteínas de Peces/agonistas , Hipercapnia/metabolismo , Hipoxia/metabolismo , Isoproterenol/farmacología , Oxihemoglobinas/metabolismo , Intercambiadores de Sodio-Hidrógeno/agonistas , Aclimatación , Animales , Lubina/sangre , Ecosistema , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Proteínas de Peces/metabolismo , Proteínas de Peces/ultraestructura , Hipercapnia/sangre , Hipoxia/sangre , Transporte de Proteínas , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura
9.
J Environ Sci (China) ; 106: 76-82, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34210441

RESUMEN

Polyaluminum chloride modified clay (PAC-MC) is a safe and efficient red tide control agent that has been studied and applied worldwide. Although it is well known that the distribution of hydrolytic aluminum species in PAC affects its flocculation, little is known about the influence of particulars aluminum species on the microalgae removal efficiency of PAC-MC; this lack of knowledge creates a bottleneck in the development of more efficient MCs based on aluminum salts. The ferron method was used in this study to quantitatively analyze the distributions of and variations in different hydrolytic aluminum species during the process of microalgae removal by PAC-MC. The results showed that Ala, which made up 5%-20% of the total aluminum, and Alp, which made up 15%-55% of the total aluminum, significantly affected microalgae removal, with Pearson's correlation coefficients of 0.83 and 0.89, respectively. Most of the aluminum in the PAC-MC sank rapidly into the sediments, but the rate and velocity of settlement were affected by the dose of modified clay. The optimal dose of PAC-MC for precipitating microalgae was determined based on its aluminum profile. These results provide guidance for the precise application of PAC-MC in the control of harmful algal blooms.


Asunto(s)
Aluminio , Microalgas , Hidróxido de Aluminio , Arcilla , Floculación
10.
J Phycol ; 55(4): 868-881, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30989658

RESUMEN

The dinoflagellate genus Scrippsiella is known to cause red tides. Mortality due to predation should be assessed in order to understand the population dynamics of Scrippsiella species. However, predation has been explored only in a few species. In this study, we examined feeding by common heterotrophic dinoflagellates Oxyrrhis marina, Gyrodinium dominans, Polykrikos kofoidii, Oblea rotunda, and Pfiesteria piscicida, and a ciliate Strombidinopsis sp., on four Scrippsiella species, of similar size, namely Scrippsiella acuminata, Scrippsiella donghaiensis, Scrippsiella lachrymosa, and Scrippsiella masanensis. All the heterotrophic protists tested could feed on all the four Scrippsiella species. However, the numerical and functional responses of P. kofoidii to the mean prey concentration were apparently different between the Scrippsiella species. With increasing prey concentration, the growth and ingestion rates of P. kofoidii on S. lachrymosa increased rapidly, and then saturated similar to those on S. acuminata, as previously reported, but those on S. donghaiensis continuously decreased. The cells of S. donghaiensis lysed P. kofoidii cells. In contrast, the growth and ingestion rates of P. kofoidii on S. masanensis were not significantly related to the prey concentration. At similarly high mean prey concentration, the growth and ingestion rates of G. dominans were significantly different between the four Scrippsiella species Therefore, differences in the growth and/or ingestion rates of G. dominans and P. kofoidii on the four Scrippsiella species might result in different ecological niches of both the predator and prey species.


Asunto(s)
Cilióforos , Dinoflagelados , Animales , Floraciones de Algas Nocivas , Procesos Heterotróficos , Conducta Predatoria
11.
Dis Aquat Organ ; 132(2): 109-124, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628577

RESUMEN

Data on Karenia brevis red tides (≥105 cells l-1) and on dead or debilitated (i.e. stranded) Kemp's ridleys Lepidochelys kempii, loggerheads Caretta caretta, green turtles Chelonia mydas, hawksbills Eretmochelys imbricata, and leatherbacks Dermochelys coriacea documented in Florida during 1986-2013 were evaluated to assess red tides as a sea turtle mortality factor. Unusually large numbers of stranded sea turtles were found coincident with red tides primarily along Florida's Gulf coast but also along a portion of Florida's Atlantic coast. These strandings were mainly adult and large immature loggerheads and Kemp's ridleys, and small immature green turtles and hawksbills. Unusually large numbers of stranded leatherbacks never coincided with red tide. For the 3 most common species, results of stranding data modeling, and of investigations that included determining brevetoxin concentrations in samples collected from stranded turtles, all indicated that red tides were associated with greater and more frequent increases in the numbers of stranded loggerheads and Kemp's ridleys than in the number of stranded green turtles. The mean annual number of stranded sea turtles attributed to K. brevis red tide was 80 (SE = 21.6, range = 2-338). Considering typical stranding probabilities, the overall mortality was probably 5-10 times greater. Red tide accounted for a substantial portion of all stranded loggerheads (7.1%) and Kemp's ridleys (17.7%), and a smaller portion of all stranded green turtles (1.6%). Even though K. brevis red tides occur naturally, the mortality they cause needs to be considered when managing these threatened and endangered species.


Asunto(s)
Dinoflagelados , Tortugas , Animales , Florida , Floraciones de Algas Nocivas
12.
Proc Natl Acad Sci U S A ; 113(43): 12208-12213, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791006

RESUMEN

Protist-alga symbiosis is widespread in the ocean, but its characteristics and function in situ remain largely unexplored. Here we report the symbiosis of the ciliate Mesodinium rubrum with cryptophyte cells during a red-tide bloom in Long Island Sound. In contrast to the current notion that Mesodinium retains cryptophyte chloroplasts or organelles, our multiapproach analyses reveal that in this bloom the endosymbiotic Teleaulax amphioxeia cells were intact and expressing genes of membrane transporters, nucleus-to-cytoplasm RNA transporters, and all major metabolic pathways. Among the most highly expressed were ammonium transporters in both organisms, indicating cooperative acquisition of ammonium as a major N nutrient, and genes for photosynthesis and cell division in the cryptophyte, showing active population proliferation of the endosymbiont. We posit this as a "Mesodinium-farming-Teleaulax" relationship, a model of protist-alga symbiosis worth further investigation by metatranscriptomic technology.


Asunto(s)
Cloroplastos/genética , Cilióforos/genética , Criptófitas/genética , Simbiosis/genética , Agricultura , Compuestos de Amonio/metabolismo , Cilióforos/crecimiento & desarrollo , Criptófitas/crecimiento & desarrollo , Regulación de la Expresión Génica , Floraciones de Algas Nocivas/fisiología , Proteínas de Transporte de Membrana/genética , Fotosíntesis/genética , Plastidios/genética , Transporte de ARN/genética
13.
Ecotoxicology ; 28(9): 1085-1104, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31559558

RESUMEN

Many species of marine life in southwestern Florida, including sea turtles, are impacted by blooms of the toxic dinoflagellate, Karenia brevis. Sublethal exposure to toxins produced by K. brevis has been shown to impact sea turtle health. Since all sea turtles in the Gulf of Mexico have protected status, a freshwater turtle, Trachemys scripta, was used as a model for immune system effects following experimental exposure to a predominant brevetoxin congener in K. brevis blooms, PbTx-3. Exposure to PbTx-3 was oral or intratracheal and health effects were assessed using a suite of immune function parameters: innate immune function (phagocytosis, plasma lysozyme activity), adaptive immune function (lymphocyte proliferation), and measures of oxidative stress (superoxide dismutase (SOD) and glutathione-S-transferase (GST) activity in plasma). Inflammation was also measured using plasma protein electrophoresis. In addition, differential expression of genes in peripheral blood leukocytes was determined using suppression subtractive hybridization followed by real-time PCR of specific genes. The primary immune effects of sublethal brevetoxin exposure in T. scripta following PbTx-3 administration, appear to be an increase in oxidative stress, a decrease in lysozyme activity, and modulation of immune function through lymphocyte proliferation responses. Plasma protein electrophoresis showed a decreased A:G ratio which may indicate potential inflammation. Genes coding for oxidative stress, such as thioredoxin and GST, were upregulated in exposed animals. That sublethal brevetoxin exposures impact immune function components suggests potential health implications for sea turtles naturally exposed to toxins. Knowledge of physiological stressors induced by brevetoxins may contribute to the ultimate goal of developing directed treatment strategies in exposed animals for reduced mortality resulting from red tide toxin exposure in sea turtles.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Toxinas Marinas/toxicidad , Tortugas/fisiología , Animales , Toxinas Marinas/química , Oxocinas/química , Pruebas de Toxicidad
14.
Molecules ; 24(24)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835604

RESUMEN

Questiomycin A (1) along with three new compounds, questiomycins C-E (2-4), were isolated from culture of Alteromonas sp. D, an algicidal marine bacterium, guided by algal lethality assay using the raphidophyte, Chattonella antiqua, one of the causative organisms of harmful algal bloom. The structures of 1-4 were assigned on the basis of their spectrometric and spectroscopic data. Compounds 1 to 4 exhibited algicidal activity against C. antiqua with LC50 values ranging from 0.18 to 6.37 M. Co-cultivation experiment revealed that 1 was produced only when the microalgae and the bacterium are in close contact, suggesting that some interactions between them trigger the biosynthesis of questiomycins. These results suggested that the algicidal bacteria such as Alteromonas sp. D can control microalgae chemically in marine ecosystem.


Asunto(s)
Alteromonas/metabolismo , Antibacterianos/biosíntesis , Organismos Acuáticos/metabolismo , Oxazinas/metabolismo , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Cromatografía Liquida , Señales (Psicología) , Floraciones de Algas Nocivas , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazinas/química , Oxazinas/aislamiento & purificación
15.
J Zoo Wildl Med ; 50(1): 33-44, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31120660

RESUMEN

Harmful algal blooms (HABs) occur when excess nutrients allow dinoflagellates to reproduce in large numbers. Marine animals are affected by blooms when algal toxins are ingested or inhaled. In the Gulf of Mexico, near annual blooms of Karenia brevis release a suite of compounds (brevetoxins) that cause sea turtle morbidity and mortality. The primary treatment at rehabilitation facilities for brevetoxin-exposed sea turtles is supportive care, and it has been difficult to design alternative treatment strategies without an understanding of the effects of brevetoxins in turtles in vivo. Previous studies using the freshwater turtle as a model species showed that brevetoxin-3 impacts the nervous and muscular systems, and is detoxified and eliminated primarily through the liver, bile, and feces. In this study, freshwater turtles (Trachemys scripta) were exposed to brevetoxin (PbTx-3) intratracheally at doses causing clear systemic effects, and treatment strategies aimed at reducing the postexposure neurological and muscular deficits were tested. Brevetoxin-exposed T. scripta displayed the same behaviors as animals admitted to rehabilitation centers for toxin exposure, ranging from muscle twitching and incoordination to paralysis and unresponsiveness. Two treatment regimes were tested: cholestyramine, a bile acid sequestrant; and an intravenous lipid emulsion treatment (Intralipidt) that provides an expanded circulating lipid volume. Cholestyramine was administered orally 1 hr and 6 hr post PbTx-3 exposure, but this regime failed to increase toxin clearance. Animals treated with Intralipid (100 mg/kg) 30 min after PbTx-3 exposure had greatly reduced symptoms of brevetoxicosis within the first 2 hr compared with animals that did not receive the treatment, and appeared fully recovered within 24 hr compared with toxin-exposed control animals that did not receive Intralipid. The results strongly suggest that Intralipid treatment for lipophilic toxins such as PbTx-3 has the potential to reduce morbidity and mortality in HAB-exposed sea turtles.


Asunto(s)
Emulsiones Grasas Intravenosas/uso terapéutico , Toxinas Marinas/toxicidad , Neurotoxinas/toxicidad , Oxocinas/toxicidad , Intoxicación/veterinaria , Sustancias Protectoras/uso terapéutico , Tortugas/fisiología , Animales , Resina de Colestiramina/uso terapéutico , Intoxicación/tratamiento farmacológico
16.
BMC Genomics ; 19(1): 765, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348078

RESUMEN

BACKGROUND: Diatoms play a great role in carbon fixation with about 20% of the whole fixation in the world. However, harmful algal bloom as known as red tide is a major problem in environment and fishery industry. Even though intensive studies have been conducted so far, the molecular mechanism behind harmful algal bloom was not fully understood. There are two major diatoms have been sequenced, but more diatoms should be examined at the whole genome level, and evolutionary genome studies were required to understand the landscape of molecular mechanism of the harmful algal bloom. RESULTS: Here we sequenced the genome of Skeletonema costatum, which is the dominant diatom in Japan causing a harmful algal bloom, and also performed RNA-sequencing analysis for conditions where harmful algal blooms often occur. As results, we found that both evolutionary genomic and comparative transcriptomic studies revealed genes for oxidative stress response and response to cytokinin is a key for the proliferation of the diatom. CONCLUSIONS: Diatoms causing harmful algal blooms have gained multi-copy of genes related to oxidative stress response and response to cytokinin and obtained an ability to intensive gene expression at the blooms.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Diatomeas/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genómica , Floraciones de Algas Nocivas , Diatomeas/metabolismo , Silicatos/metabolismo
17.
J Phycol ; 54(5): 734-743, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30080927

RESUMEN

Gymnodinium smaydae is one of the fastest growing dinoflagellates. However, its population dynamics are affected by both growth and mortality due to predation. Thus, feeding by common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Oblea rotunda, Oxyrrhis marina, and Polykrikos kofoidii, and the naked ciliate Pelagostrobilidium sp. on G. smaydae was investigated in the laboratory. Furthermore, growth and ingestion rates of O. marina, G. dominans, and Pelagostrobilidium sp. on G. smaydae in response to prey concentration were also determined. Oxyrrhis marina, G. dominans, G. moestrupii, and Pelagostrobilidium sp. were able to feed on G. smaydae, but P. kofoidii and O. rotunda did not feed on this dinoflagellate. The maximum growth rate of O. marina on G. smaydae was 0.411 per day. However, G. smaydae did not support the positive growth of Pelagostrobilidium sp. The maximum ingestion rates of O. marina and Pelagostrobilidium sp. on G. smaydae were 0.27 and 6.91 ng C · predator-1  · d-1 , respectively. At the given mean prey concentrations, the highest growth and ingestion rates of G. dominans on G. smaydae were 0.114 per day and 0.04 ng C · predator-1  · d-1 , respectively. The maximum growth and ingestion rates of O. marina on G. smaydae are lower than those on most of the other algal prey species. Therefore, O. marina may be an effective predator of G. smaydae, but G. smaydae may not be the preferred prey for supporting high growth of the predator in comparison to other species as inferred from a literature survey.


Asunto(s)
Cilióforos/fisiología , Dinoflagelados/fisiología , Cadena Alimentaria , Conducta Predatoria , Animales , Procesos Heterotróficos , Dinámica Poblacional
18.
Proc Natl Acad Sci U S A ; 112(48): 14783-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627232

RESUMEN

Mesodinium rubrum is a globally distributed nontoxic ciliate that is known to produce intense red-colored blooms using enslaved chloroplasts from its algal prey. Although frequent enough to have been observed by Darwin, blooms of M. rubrum are notoriously difficult to quantify because M. rubrum can aggregate into massive clouds of rusty-red water in a very short time due to its high growth rates and rapid swimming behavior and can disaggregate just as quickly by vertical or horizontal dispersion. A September 2012 hyperspectral image from the Hyperspectral Imager for the Coastal Ocean sensor aboard the International Space Station captured a dense red tide of M. rubrum (10(6) cells per liter) in surface waters of western Long Island Sound. Genetic data confirmed the identity of the chloroplast as a cryptophyte that was actively photosynthesizing. Microscopy indicated extremely high abundance of its yellow fluorescing signature pigment phycoerythrin. Spectral absorption and fluorescence features were related to ancillary photosynthetic pigments unique to this organism that cannot be observed with traditional satellites. Cell abundance was estimated at a resolution of 100 m using an algorithm based on the distinctive yellow fluorescence of phycoerythrin. Future development of hyperspectral satellites will allow for better enumeration of bloom-forming coastal plankton, the associated physical mechanisms, and contributions to marine productivity.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Imágenes Satelitales , Algoritmos , Cloroplastos/metabolismo , Color , ADN Ribosómico/metabolismo , Dinoflagelados , Océanos y Mares , Fotosíntesis , Ficoeritrina/química , Nave Espacial
19.
Ecotoxicol Environ Saf ; 157: 61-66, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29605644

RESUMEN

Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity.


Asunto(s)
Microalgas/efectos de los fármacos , Ulva/química , Diatomeas/efectos de los fármacos , Dinoflagelados/efectos de los fármacos , Haptophyta/efectos de los fármacos , Floraciones de Algas Nocivas , Estramenopilos/efectos de los fármacos
20.
Plant J ; 85(2): 320-333, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662936

RESUMEN

Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genómica/métodos , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA