Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(5): 1679-1686, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38262062

RESUMEN

The operation of photonic devices often relies on modulation of their refractive index. While the sub-bandgap index change through bound-electron optical nonlinearity offers a faster response than utilizing free carriers with an overbandgap pump, optical switching often suffers from inefficiency. Here, we use a recently observed metasurface based on mirror-induced optical bound states in the continuum, to enable superior modulation characteristics. We achieve a pulsewidth-limited switching time of 100 fs, reflectance change of 22%, remarkably low energy consumption of 255 µJ/cm2, and an enhancement of modulation contrast by a factor of 440 compared to unpatterned silicon. Additionally, the narrow photonic resonance facilitates the detection of the dispersive nondegenerate two-photon nonlinearity, allowing tunable pump and probe excitation. These findings are explained by a two-band theoretical model for the dispersive nonlinear index. The demonstrated efficient and rapid switching holds immense potential for applications, including quantum photonics, sensing, and metrology.

2.
Am J Physiol Endocrinol Metab ; 326(2): E107-E123, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170164

RESUMEN

Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.


Asunto(s)
Hígado , Neuronas , Humanos , Hígado/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático/metabolismo , Polímeros , Tirosina 3-Monooxigenasa/metabolismo
3.
Small ; 20(37): e2400778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747048

RESUMEN

Herein, it is demonstrated that the toxic effect of gold nanoparticles (Au NPs) on three different cancer cell lines (U-118 and LN-299 glioblastoma and HCT-116 colon) depends on their absorption dynamics by cells, related to the shapes of the NPs. This hypothesis is confirmed by showing that i) based on refractive index (RI) values, typical for cell components and gold nanoparticles, it is possible to show the absorption dynamics and accumulation locations of the latter ones inside and outside of the cells. Moreover, ii) the saturation of the accumulated Au NPs volume in the cells depends on the nanoparticle shape and is reached in the shortest time for star-shaped Au NPs (AuS NPs) and in the longest time for spherical Au NPs (AuSph NPs) and on the cancer cells, where the longest and the shortest saturation are noticed for HCT-116 and LN-229 cells, respectively. A physical model of Au NPs absorption dynamics is proposed, where the diameter and shape of the Au NPs are used as parameters. The obtained theoretical data are consistent with experimental data in 85-98%.


Asunto(s)
Glioblastoma , Oro , Nanopartículas del Metal , Humanos , Oro/química , Glioblastoma/metabolismo , Glioblastoma/patología , Nanopartículas del Metal/química , Línea Celular Tumoral , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Refractometría , Células HCT116 , Colon/metabolismo , Colon/patología
4.
J Mol Recognit ; 37(5): e3099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38923720

RESUMEN

Protein concentration (PC) is an essential characteristic of cells and organelles; it determines the extent of macromolecular crowding effects and serves as a sensitive indicator of cellular health. A simple and direct way to quantify PC is provided by brightfield-based transport-of-intensity equation (TIE) imaging combined with volume measurements. However, since TIE is based on geometric optics, its applicability to micrometer-sized particles is not clear. Here, we show that TIE can be used on particles with sizes comparable to the wavelength. At the same time, we introduce a new ImageJ plugin that allows TIE image processing without resorting to advanced mathematical programs. To convert TIE data to PC, knowledge of particle volumes is essential. The volumes of bacteria or other isolated particles can be measured by displacement of an external absorbing dye ("transmission-through-dye" or TTD microscopy), and for spherical intracellular particles, volumes can be estimated from their diameters. We illustrate the use of TIE on Escherichia coli, mammalian nucleoli, and nucleolar fibrillar centers. The method is easy to use and achieves high spatial resolution.


Asunto(s)
Escherichia coli , Orgánulos , Escherichia coli/metabolismo , Orgánulos/metabolismo , Orgánulos/química , Procesamiento de Imagen Asistido por Computador , Animales , Humanos , Nucléolo Celular/metabolismo
5.
J Synchrotron Radiat ; 31(Pt 4): 867-876, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771779

RESUMEN

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and ß, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.

6.
Exp Eye Res ; 241: 109858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467176

RESUMEN

The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).


Asunto(s)
Envejecimiento , Cristalino , Ratones , Animales , Japón
7.
J Microsc ; 295(2): 199-213, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38487931

RESUMEN

In this article, the optical and structural properties of iPP/TiO2 nanocomposite fibres, considering three distinct extrusion speeds (25, 50 and 78 m/min) in addition to blank isotactic polypropylene samples were determined. Employing computed tomographic scans, localised optical defects in the nanocomposite fibres are unveiled, while refractive indices are examined by analysing transmitted intensity with incident light vibrating parallel and perpendicular to the fibre axis. The internal structure is further characterised through birefringence and density calculations. Mechanical properties, specifically stiffness, are probed by measuring elastic modulus values along the fibre. The investigation extends to the presence of TiO2 nanoparticles in the isotactic polypropylene matrix, inspecting their influence on the uniform morphology along and across the fibre. While the addition of TiO2 nanoparticles has many advantages, including enhanced properties, the study shows adverse effects on the morphological integrity of the fibres, particularly at higher extrusion rates. Micrographs are included to visually illustrate these findings, providing a comprehensive understanding of the complex interaction between extrusion rates, TiO2 nanoparticle incorporation, and the resulting optical and structural properties in iPP fibres.

8.
Nanotechnology ; 35(37)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38897181

RESUMEN

While silver nanowires (Ag NWs) have been demonstrated as a highly efficient transparent conducting material, they suffer from strong light scattering, which is quantified by a large haze factor (HF) in the optical spectrum. Here we investigate the influence of the dielectric environment on the light scattering of Ag NWs by comparing experimental measurements and simulations. In air, two peaks on the HF spectra are observed experimentally at the wavelength ofλI= 350 nm andλII= 380 nm and are attributed by simulations to the influence of the Ag NWs pentagonal shape on the localized surface plasmon resonance. The relative intensity between the two peaks is found to be dependent on whether the Ag NWs are in contact with the glass substrate or not. The HF behaviour in the near IR region seems to be dominated by Rayleigh scattering following simulations results. Dielectric environments of Ag NWs with various refractive indexes were obtained experimentally by the conformal deposition of different metal oxide coatings using atomic layer deposition, including Al-doped zinc oxide, Al2O3and SiO2coatings. The HF is found to be correlated with the refractive index environment in terms of HF peaks position, intensity and broadening. This trend of HF peaks is supported by a theoretical model to understand the optical mechanism behind this phenomenon.

9.
J Fluoresc ; 34(2): 515-522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37289408

RESUMEN

Molybdenum trioxide nanomaterials have attained notable attention in the recent past and are used in various optoelectronic and biomedical applications. Here blue and purple blue light emitting MoO3 nanophosphors were synthesized using the simple hydrothermal method at three different temperatures 100ºC, 150°C, and 200°C. Structural characterization using XRD along with Raman spectroscopy confirms the formation of a highly stable orthorhombic phase. Micro strain effects have been analyzed by employing the Williamson-Hall method using a uniform deformation model. Nanorod like morphology was obtained from FESEM. Optical analysis, using Tauc plot shows a decreasing trend in bandgap value with increasing temperature. Emission peaks in the photoluminescence spectrum are associated with the transition between the sub-bands of the Mo5+ defect state. From CIE coordinates it is confirmed that the characteristic light from the samples is blue and purple-blue. Being an excellent blue and purple blue light emitting phosphor, MoO3 is a suitable material for future LED and fluorescence imaging applications.

10.
Biol Pharm Bull ; 47(6): 1163-1171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880624

RESUMEN

The vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography. First, we investigated and characterized the RI distribution of BCs in two-dimensional (2D) cultured HepG2 cells. BCs were identified based on their distinct morphology and functionality, as confirmed using a fluorescence-labeled bile acid analog. The RI distribution of BCs exhibited three common features: (1) luminal spaces with a low RI between adjacent hepatocytes; (2) luminal spaces surrounded by a membranous structure with a high RI; and (3) multiple microvillus structures with a high RI within the lumen. Second, we demonstrated the characterization of BC structures in a three-dimensional (3D) culture model, which is more relevant to the in vivo environment but more difficult to evaluate than 2D cultures. Various BC structures were identified inside HepG2 spheroids with the three features of RI distribution. Third, we conducted comparative analyses and found that the BC lumina of spheroids had higher circularity and lower RI standard deviation than 2D cultures. We also addressed comparison of BC and intracellular lumen-like structures within a HepG2 spheroid, and found that the BC lumina had higher RI and longer perimeter than intracellular lumen-like structures. Our demonstration of the non-destructive, label-free visualization and quantitative characterization of living BC structures will be a basis for various hepatological and pharmaceutical applications.


Asunto(s)
Canalículos Biliares , Humanos , Células Hep G2 , Refractometría/métodos , Esferoides Celulares/ultraestructura , Tomografía/métodos , Hepatocitos/ultraestructura , Técnicas de Cultivo de Célula
11.
Graefes Arch Clin Exp Ophthalmol ; 262(8): 2533-2539, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456928

RESUMEN

PURPOSE: This study aimed to estimate the corneal keratometric index in the eyes of cataract surgery patients who received zero-power intraocular lenses (IOLs). METHODOLOGY: This retrospective study analyzed postoperative equivalent spherical refraction and axial length, mean anterior curvature radius and aqueous humor refractive index to calculate the theoretical corneal keratometric index value (nk). Data was collected from 2 centers located in France and Germany. RESULTS: Thirty-six eyes were analyzed. The results revealed a mean corneal keratometric index of 1.329 ± 0.005 for traditional axial length (AL) and 1.331 ± 0.005 for Cooke modified axial length (CMAL). Results ranged from minimum values of 1.318/1.320 to maximum values of 1.340/1.340. CONCLUSION: The corneal keratometric index is a crucial parameter for ophthalmic procedures and calculations, particularly for IOL power calculation. Notably, the estimated corneal keratometric index value of 1.329/1.331 in this study is lower than the commonly used 1.3375 index. These findings align with recent research demonstrating that the theoretical corneal keratometric index should be approximately 1.329 using traditional AL and 1.331 using CMAL, based on the ratio between the mean anterior and posterior corneal curvature radii (1.22).


Asunto(s)
Extracción de Catarata , Córnea , Lentes Intraoculares , Refracción Ocular , Humanos , Estudios Retrospectivos , Femenino , Masculino , Refracción Ocular/fisiología , Anciano , Persona de Mediana Edad , Longitud Axial del Ojo/patología , Agudeza Visual/fisiología , Anciano de 80 o más Años , Topografía de la Córnea/métodos , Implantación de Lentes Intraoculares , Diseño de Prótesis , Estudios de Seguimiento , Biometría/métodos
12.
Ophthalmic Physiol Opt ; 44(2): 334-346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299736

RESUMEN

The intracapsular accommodation mechanism (IAM) may be understood as an increase in the lens equivalent refractive index as the eye accommodates. Our goal was to evaluate the existence of an IAM by analysing observed changes in the inner curvature gradient of the lens. To this end, we fitted a gradient index and curvature lens model to published experimental data on external and nucleus geometry changes during accommodation. For each case analysed, we computed the refractive power and equivalent index for each accommodative state using a ray transfer matrix. All data sets showed an increase in the effective refractive index, indicating a positive IAM, which was stronger for older lenses. These results suggest a strong dependence of the lens equivalent refractive index on the inner curvature gradient.


Asunto(s)
Cristalino , Lentes , Humanos , Refracción Ocular , Acomodación Ocular , Refractometría/métodos
13.
Chromatographia ; 87(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435274

RESUMEN

Worldwide polystyrene (PS) production in 2020 was approximately 27 million metric tons, distributed among many nations, making it one of the most heavily imported and exported chemicals. Commercially produced PS usually possesses a broad molar mass distribution, often with a substantial oligomeric component. The latter can significantly affect processing and end-use, in addition to having potentially hazardous health effects and to impacting the polymer's export classification by regulatory agencies. Quantitation of the oligomeric region of polymers by size-exclusion chromatography with concentration-sensitive and/or static light scattering detection is complicated by the non-constancy of the specific refractive index increment (∂n/∂c) in this region, which affects the calculated amount (mass fraction) of oligomer in a polymer, molar mass averages, and related conclusions regarding macromolecular properties. Here, a multi-detector SEC approach including differential refractometry, multi-angle static light scattering, and differential viscometry has been applied to determining the ∂n/∂c of n-butyl terminated styrene oligomers at each degree of polymerization from monomer to hexamer, and also of a hexadecamer. Large changes in this parameter from one degree of polymerization to the next are observed, including but not restricted to the fact that the (∂n/∂c) of the monomer is less than half that of PS polymer at identical experimental conditions. As part of this study, the individual effects of injection volume, flow rate, and temperature on chromatographic resolution were examined. Incorporation of the on-line viscometer allowed for accurate determination of the intrinsic viscosity and viscometric radius of the monomer and oligomers.

14.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894468

RESUMEN

We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser. We measured the 1f and 2f wavelength modulation response versus excitation laser wavelength and verified the power scaling behaviour of the signal.

15.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610262

RESUMEN

The refractive index of seawater is one of the essential parameters in ocean observation, so it is necessary to achieve high-precision seawater refractive index measurements. In this paper, we propose a method for measuring the refractive index of seawater, based on a position-sensitive detector (PSD). A theoretical model was established to depict the correlation between laser spot displacement and refractive index change, utilizing a combination of a position-sensitive detector and laser beam deflection principles. Based on this optical measurement method, a seawater refractive index measurement system was established. To effectively enhance the sensitivity of refractive index detection, a focusing lens was incorporated into the optical path of the measuring system, and simulations were conducted to investigate the impact of focal length on refractive index sensitivity. The calibration experiment of the measuring system was performed based on the relationship between the refractive index of seawater and underwater pressure (depth). By measuring laser spot displacement at different depths, changes in displacement, with respect to both refractive index and depth, were determined. The experimental results demonstrate that the system exhibits a sensitivity of 9.93×10-9 RIU (refractive index unit), and the refractive index deviation due to stability is calculated as ±7.54×10-9 RIU. Therefore, the feasibility of this highly sensitive measurement of seawater refractive index is verified. Since the sensitivity of the refractive index measurement of this measurement system is higher than the refractive index change caused by the wake of underwater vehicles, it can also be used in various applications for underwater vehicle wake measurement, as well as seawater refractive index measurement, such as the motion state monitoring of underwater navigation targets such as AUVs and ROVs.

16.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339677

RESUMEN

Guided-mode resonance (GMR) gratings have emerged as a promising sensing technology, with a growing number of applications in diverse fields. This study aimed to identify the optimal design parameters of a simple-to-fabricate and high-performance one-dimensional GMR grating. The structural parameters of the GMR grating were optimized, and a high-refractive-index thin film was simulated on the grating surface, resulting in efficient confinement of the electric field energy within the waveguide. Numerical simulations demonstrated that the optimized GMR grating exhibited remarkable sensitivity (252 nm/RIU) and an extremely narrow full width at half maximum (2 × 10-4 nm), resulting in an ultra-high figure of merit (839,666) at an incident angle of 50°. This performance is several orders of magnitude higher than that of conventional GMR sensors. To broaden the scope of the study and to make it more relevant to practical applications, simulations were also conducted at incident angles of 60° and 70°. This holistic approach sought to develop a comprehensive understanding of the performance of the GMR-based sensor under diverse operational conditions.

17.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931671

RESUMEN

A novel fiber sensor for the refractive index sensing of seawater based on a Mach-Zehnder interferometer has been demonstrated. The sensor consisted of a single-mode fiber (SMF)-no-core fiber (NCF)-single-mode fiber structure (shortened to an SNS structure) with a large lateral offset spliced between the two sections of a multimode fiber (MMF). Optimization studies of the multimode fiber length, offset SNS length, and vertical axial offset distance were performed to improve the coupling efficiency of interference light and achieve the best extinction ratio. In the experiment, a large lateral offset sensor was prepared to detect the refractive index of various ratios of saltwater, which were used to simulate seawater environments. The sensor's sensitivity was up to -13,703.63 nm/RIU and -13,160 nm/RIU in the refractive index range of 1.3370 to 1.3410 based on the shift of the interference spectrum. Moreover, the sensor showed a good linear response and high stability, with an RSD of only 0.0089% for the trough of the interference in air over 1 h.

18.
Sensors (Basel) ; 24(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38894127

RESUMEN

The refractive index of a liquid serves as a fundamental parameter reflecting its composition, thereby enabling the determination of component concentrations in various fields such as chemical research, the food industry, and environmental monitoring. Traditional methods for refractive index (RI) measurement rely on light deflection angles at interfaces between the liquid and a material with a known refractive index. In this paper, the authors present a new differential refractometer for the highly sensitive measurement of RI differences between two liquid samples. Using a configuration with two cells equipped with flat parallel plates as measuring elements, the instrument facilitates accurate analysis. Namely, the sensor signals from both the solution and the solvent cuvette are generated simultaneously with one laser pulse, reducing the possible fluctuations in the laser radiation intensity. Our evaluation shows the high sensitivity of RI measurements <7×10-6), so this differential refractometer can be proposed not only as a high-sensitivity sensing tool that can be used for mobile detection of nanoparticles in solution samples but also to determine the level of environmental nano-pollution using water (including rain, snow) samples from various natural as well as industrial sources, thus helping to solve some important environmental problems.

19.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894188

RESUMEN

The curing of epoxy resin is a complex thermo-chemical process that is difficult to monitor using existing sensing systems. We monitored the curing process of an epoxy resin by using long-period fiber gratings. The refractive index of the epoxy resin increases during the curing process and can be measured to determine the degree of curing. We employed long-period fiber gratings that are sensitive to the refractive index of an external medium for the measurement of refractive index changes in the resin. We observed that the resonances of long-period fiber gratings increased their depth with the increased refractive index of the resin, which was well described by our simulation taking the coupling to radiation modes into account. We demonstrated that the degree of cure can be estimated from the depth of the grating resonances using a phenomenological model. At the same time, long-period fiber gratings are sensitive to temperature variations and internal strains that are induced during curing. These factors may affect the measurements of curing degree and should also be addressed.

20.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38544192

RESUMEN

Silicon photonic-based refractive index sensors are of great value in the detection of gases, biological and chemical substances. Among them, microring resonators are the most promising due to their compact size and narrow Lorentzian-shaped spectrum. The electric field in a subwavelength grating waveguide (SWG) is essentially confined in the low-refractive index dielectric, favoring enhanced analyte-photon interactions, which represents higher sensitivity. However, it is very challenging to further significantly improve the sensitivity of SWG ring resonator refractive index sensors. Here, a hybrid waveguide blocks double slot subwavelength grating microring resonator (HDSSWG-MRR) refractive index sensor operating in a water refractive index environment is proposed. By designing a new waveguide structure, a sensitivity of up to 1005 nm/RIU has been achieved, which is 182 nm/RIU higher than the currently highest sensitivity silicon photonic micro ring refractive index sensor. Meanwhile, utilizing a unique waveguide structure, a Q of 22,429 was achieved and a low limit of detection of 6.86 × 10-5 RIU was calculated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA