Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.726
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815582

RESUMEN

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Asunto(s)
Movimiento Celular , Fibrosis , Riñón , Linfocitos , Receptor de Muerte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transducción de Señal , Animales , Fibrosis/inmunología , Ratones , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Movimiento Celular/inmunología , Humanos , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/inmunología , Ratones Endogámicos C57BL , Enfermedades Renales/inmunología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Inmunidad Innata/inmunología , Ratones Noqueados , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/inmunología , Intestinos/patología
2.
J Biol Chem ; : 107598, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059495

RESUMEN

In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA sequencing, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence (CDS) of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.

3.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430461

RESUMEN

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Asunto(s)
Adenina/análogos & derivados , Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratones , Animales , Riñón/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Obstrucción Ureteral/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Desmetilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
4.
FASEB J ; 38(2): e23422, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38206179

RESUMEN

Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling. GRK5 has been shown to play a role in various diseases including cardiac disorders and cancer. However, the role of GRK5 in renal fibrosis remains largely unknown. Our finding revealed that GRK5 was significantly overexpressed in renal fibrosis. Specifically, GRK5 was transferred into the nucleus via its nuclear localization sequence to regulate histone deacetylases (HDAC) 5 expression under renal fibrosis. GRK5 acted as an upstream regulator of HDAC5/Smad3 signaling pathway. HDAC5 regulated and prevented the transcriptional activity of myocyte enhancer factor 2A (MEF2A) to repress the transcription of Smad7 which leading to the activation of Smad3. These findings first revealed that GRK5 may be a potential therapeutic target for the treatment of renal fibrosis. Inhibition of GRK5 activity may be a promising strategy to attenuate the progression of renal fibrosis.


Asunto(s)
Quinasa 5 del Receptor Acoplado a Proteína-G , Insuficiencia Renal Crónica , Transducción de Señal , Humanos , Fibrosis , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Histona Desacetilasas/genética , Receptores Acoplados a Proteínas G
5.
Circ Res ; 133(1): 71-85, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37232163

RESUMEN

BACKGROUND: As a part of natural disease progression, acute kidney injury (AKI) can develop into chronic kidney disease via renal fibrosis and inflammation. LTBP4 (latent transforming growth factor beta binding protein 4) regulates transforming growth factor beta, which plays a role in renal fibrosis pathogenesis. We previously investigated the role of LTBP4 in chronic kidney disease. Here, we examined the role of LTBP4 in AKI. METHODS: LTBP4 expression was evaluated in human renal tissues, obtained from healthy individuals and patients with AKI, using immunohistochemistry. LTBP4 was knocked down in both C57BL/6 mice and human renal proximal tubular cell line HK-2. AKI was induced in mice and HK-2 cells using ischemia-reperfusion injury and hypoxia, respectively. Mitochondrial division inhibitor 1, an inhibitor of DRP1 (dynamin-related protein 1), was used to reduce mitochondrial fragmentation. Gene and protein expression were then examined to assess inflammation and fibrosis. The results of bioenergetic studies for mitochondrial function, oxidative stress, and angiogenesis were assessed. RESULTS: LTBP4 expression was upregulated in the renal tissues of patients with AKI. Ltbp4-knockdown mice showed increased renal tissue injury and mitochondrial fragmentation after ischemia-reperfusion injury, as well as increased inflammation, oxidative stress, and fibrosis, and decreased angiogenesis. in vitro studies using HK-2 cells revealed similar results. The energy profiles of Ltbp4-deficient mice and LTBP4-deficient HK-2 cells indicated decreased ATP production. LTBP4-deficient HK-2 cells exhibited decreased mitochondrial respiration and glycolysis. Human aortic endothelial cells and human umbilical vein endothelial cells exhibited decreased angiogenesis when treated with LTBP4-knockdown conditioned media. Mitochondrial division inhibitor 1 treatment ameliorated inflammation, oxidative stress, and fibrosis in mice and decreased inflammation and oxidative stress in HK-2 cells. CONCLUSIONS: Our study is the first to demonstrate that LTBP4 deficiency increases AKI severity, consequently leading to chronic kidney disease. Potential therapies focusing on LTBP4-associated angiogenesis and LTBP4-regulated DRP1-dependent mitochondrial division are relevant to renal injury.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Células Endoteliales/metabolismo , Fibrosis , Inflamación/metabolismo , Riñón/metabolismo , Proteínas de Unión a TGF-beta Latente , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Insuficiencia Renal Crónica/complicaciones , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Crecimiento Transformador beta/metabolismo
6.
Exp Cell Res ; : 114194, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127440

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the role and possible mechanism of lncRNA XIST in renal fibrosis and to provide potential endogenous targets for renal fibrosis in obstructive nephropathy (ON). METHODS: The study included 50 cases of ON with renal fibrosis (samples taken from patients undergoing nephrectomy due to ON) and 50 cases of normal renal tissue (samples taken from patients undergoing total or partial nephrectomy due to accidental injury, congenital malformations, and benign tumors). Treatment of human proximal renal tubular epithelium (HK-2) cells with TGF-ß1 simulated renal fibrosis in vitro. Cell viability and proliferation were measured by CCK-8 and EdU, and cell migration was measured by transwell. XIST, miR-124-3p, ITGB1, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, α-SMA, and fibronectin) were detected by PCR and immunoblot. The targeting relationship between miR-124-3p and XIST or ITGB1 was verified by starBase and dual luciferase reporter gene experiments. In addition, The left ureter was ligated in mice as a model of unilateral ureteral obstruction (UUO), and the renal histopathology was observed by HE staining and Masson staining. RESULTS: ON patients with renal fibrosis had elevated XIST and ITGB1 levels and reduced miR-124-3p levels. The administration of TGF-ß1 exhibited a dose-dependent promotion of HK-2 cell viability, proliferation, migration, and EMT. Conversely, depleting XIST or enhancing miR-124-3p hindered HK-2 cell viability, proliferation, migration, and EMT in TGF-ß1-damaged HK-2 cells HK-2 cells. XIST functioned as a miR-124-3p sponge. Additionally, miR-124-3p negatively regulated ITGB1 expression. Elevating ITGB1 weakened the impact of XIST depletion on TGF-ß1-damaged HK-2 cells. Down-regulating XIST improved renal fibrosis in UUO mice. CONCLUSION: XIST promotes renal fibrosis in ON by elevating miR-124-3p and reducing ITGB1 expressions.

7.
Exp Cell Res ; 440(1): 114102, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821252

RESUMEN

Renal fibrosis, apoptosis and autophagy are the main pathological manifestations of angiotensin II (Ang II)-induced renal injury. G protein-coupled receptor 39 (GPR39) is highly expressed in various tissues including the kidney, but its role in the kidney is entirely unclear. This study was performed to investigate the underlying mechanism by which knockdown of GPR39 alleviated Ang II-induced renal injury. In vivo, GPR39 knockout (KO) mice were constructed and infused with Ang II for 4 weeks, followed by renal function tests. In vitro, Ang II-induced cells were treated with si-GPR39 for 48 h. Fibrosis, apoptosis and autophagy were detected in both cells and mice. The underlying mechanism was sought by mRNA transcriptome sequencing and validated in vitro. GPR39 was upregulated in renal tissues of mice with Ang II-mediated renal injury. Knockdown of GPR39 ameliorated renal fibrosis, apoptosis, and autophagy, and decreased the expression of ribonucleotide reductase M2 (RRM2). In vitro, knockdown of GPR39 was also identified to improve the Ang II-induced cell fibrosis, apoptosis, and autophagy. mRNA transcriptome results showed that knockout of GPR39 reduced the expression of RRM2 in Ang II-induced kidney tissue. Activation of RRM2 could reverse the therapeutic effect of GPR39 knockout, and the inhibitor of RRM2 could improve the cell fibrosis, apoptosis and autophagy caused by GPR39 agonist. These results indicated that targeting of GPR39 could alleviate Ang II-induced renal fibrosis, apoptosis, and autophagy via reduction of RRM2 expression, and GPR39 may serve as a potential target for Ang II-induced renal injury.


Asunto(s)
Angiotensina II , Apoptosis , Ratones Noqueados , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Autofagia/genética , Fibrosis/metabolismo , Masculino , Ratones Endogámicos C57BL , Riñón/patología , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/genética
8.
Mol Ther ; 32(2): 313-324, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38093516

RESUMEN

Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-ß is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-ß/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Fibrosis , Riñón/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120696

RESUMEN

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Asunto(s)
Senescencia Celular , Cobre , Fibrosis , Riñón , Mitocondrias , Complejo Piruvato Deshidrogenasa , Cobre/metabolismo , Mitocondrias/metabolismo , Fibrosis/metabolismo , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Riñón/metabolismo , Riñón/patología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ciclo del Ácido Cítrico
10.
Mol Cell Proteomics ; 22(3): 100510, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804530

RESUMEN

Obstructive nephropathy is one of the leading causes of kidney injury and renal fibrosis in pediatric patients. Although considerable advances have been made in understanding the pathophysiology of obstructive nephropathy, most of them were based on animal experiments and a comprehensive understanding of obstructive nephropathy in pediatric patients at the molecular level remains limited. Here, we performed a comparative proteomics analysis of obstructed kidneys from pediatric patients with ureteropelvic junction obstruction and healthy kidney tissues. Intriguingly, the proteomics revealed extensive metabolic reprogramming in kidneys from individuals with ureteropelvic junction obstruction. Moreover, we uncovered the dysregulation of NAD+ metabolism and NAD+-related metabolic pathways, including mitochondrial dysfunction, the Krebs cycle, and tryptophan metabolism, which led to decreased NAD+ levels in obstructed kidneys. Importantly, the major NADase CD38 was strongly induced in human and experimental obstructive nephropathy. Genetic deletion or pharmacological inhibition of CD38 as well as NAD+ supplementation significantly recovered NAD+ levels in obstructed kidneys and reduced obstruction-induced renal fibrosis, partially through the mechanisms of blunting the recruitment of immune cells and NF-κB signaling. Thus, our work not only provides an enriched resource for future investigations of obstructive nephropathy but also establishes CD38-mediated NAD+ decline as a potential therapeutic target for obstruction-induced renal fibrosis.


Asunto(s)
NAD , Obstrucción Ureteral , Animales , Niño , Humanos , Fibrosis , Riñón/metabolismo , NAD/metabolismo , Proteómica , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo
11.
Genesis ; 62(1): e23529, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37345818

RESUMEN

Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-ß (TGF-ß), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1ß, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-ß1/Smad and Wnt/ß-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-ß1/Smad and Wnt/ß-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.


Asunto(s)
Factor de Crecimiento Transformador beta1 , beta Catenina , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , beta Catenina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/farmacología , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/farmacología , Células Epiteliales/metabolismo , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal , Riñón , Fibrosis
12.
Am J Physiol Cell Physiol ; 326(3): C935-C947, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284121

RESUMEN

The molecular basis of renal interstitial fibrosis, a major pathological feature of progressive kidney diseases, remains poorly understood. Autophagy has been implicated in renal fibrosis, but whether it promotes or inhibits fibrosis remains controversial. Moreover, it is unclear how autophagy is activated and sustained in renal fibrosis. The present study was designed to address these questions using the in vivo mouse model of unilateral ureteral obstruction and the in vitro model of hypoxia in renal tubular cells. Both models showed the activation of hypoxia-inducible factor-1 (HIF-1) and autophagy along with fibrotic changes. Inhibition of autophagy with chloroquine reduced renal fibrosis in unilateral ureteral obstruction model, whereas chloroquine and autophagy-related gene 7 knockdown decreased fibrotic changes in cultured renal proximal tubular cells, supporting a profibrotic role of autophagy. Notably, pharmacological and genetic inhibition of HIF-1 led to the suppression of autophagy and renal fibrosis in these models. Mechanistically, knock down of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a downstream target gene of HIF, decreased autophagy and fibrotic changes during hypoxia in BUMPT cells. Together, these results suggest that HIF-1 may activate autophagy via BNIP3 in renal tubular cells to facilitate the development of renal interstitial fibrosis.NEW & NOTEWORTHY Autophagy has been reported to participate in renal fibrosis, but its role and underlying activation mechanism is unclear. In this study, we report the role of HIF-1 in autophagy activation in models of renal fibrosis and further investigate the underlying mechanism.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratones , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Factor 1 Inducible por Hipoxia , Enfermedades Renales/patología , Hipoxia , Autofagia/genética , Fibrosis , Cloroquina/farmacología
13.
J Lipid Res ; : 100610, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094771

RESUMEN

Dyslipidemia may induce chronic kidney disease and trigger both ferroptosis and endoplasmic reticulum (ER) stress, but the instigating factors are incompletely understood. We tested the hypothesis that different models of dyslipidemia engage distinct kidney injury mechanisms. Wild-type (WT) or proprotein-convertase subtilisin/kexin type-9 (PCSK9)-gain-of-function (GOF) Ossabaw pigs were fed with a 6-months normal (ND) or high-fat (HFD) diet (n=5-6 each). Renal function and fat deposition were studied in-vivo using CT, and blood and kidney tissue studied ex-vivo for lipid profile, systemic and renal vein free fatty acids (FFA) levels, and renal injury mechanisms including lipid peroxidation (LPO), ferroptosis, and ER stress. Compared with WT-ND pigs, both HFD and PCSK9-GOF elevated triglyceride levels, which were highest in WT-HFD, whereas total and low-density lipoprotein (LDL) cholesterol levels rose only in PCSK9-GOF pigs, particularly in PCSK9-GOF/HFD. The HFD groups had worse kidney function than ND. The WT-HFD kidneys retained more FFA than other groups, but all kidneys developed fibrosis. Furthermore, HFD-induced ferroptosis in WT-HFD indicated by increased free iron, and LPO, and decreased glutathione peroxidase-4 mRNA expression, while PCSK9-GOF induced ER stress with upregulated GRP94 and CHOP protein expression. In vitro, PK1 cells treated with palmitic acid (PA) and oxidized-LDL to mimic HFD and PCSK9-GOF showed similar trends to those observed in vivo. Taken together, HFD-induced hypertriglyceridemia promotes renal FFA retention and ferroptosis, whereas PCSK9-GOF-induced hypercholesterolemia elicits ER stress, both resulting in renal fibrosis. These observations suggest different targets for preventing and treating renal fibrosis in subjects with specific types of dyslipidemia.

14.
J Cell Mol Med ; 28(3): e18075, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38213100

RESUMEN

The prevalence of chronic kidney disease (CKD) is highly increasing. Renal fibrosis is a common pathological feature in various CKD. Previous studies showed tubular cell senescence is highly involved in the pathogenesis of renal fibrosis. However, the inducers of tubular senescence and the underlying mechanisms have not been fully investigated. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled seven-span transmembrane receptor, increases renal fibrosis and plays an important role in tubular cell injury. Whereas, whether CXCR4 could induce tubular cell senescence and the detailed mechanisms have not studied yet. In this study, we adopted adriamycin nephropathy and 5/6 nephrectomy models, and cultured tubular cell line. Overexpression or knockdown of CXCR4 was obtained by injection of related plasmids. We identified CXCR4 increased in injury tubular cells. CXCR4 was expressed predominantly in renal tubular epithelial cells and co-localized with adipose differentiation-related protein (ADRP) as well as the senescence-related protein P16INK4A . Furthermore, we found overexpression of CXCR4 greatly induced the activation of ß-catenin, while knockdown of CXCR4 inhibited it. We also found that CXCR4 inhibited fatty acid oxidation and triggered lipid deposition in tubular cells. To inhibit ß-catenin by ICG-001, an inhibitor of ß-catenin, could significantly block CXCR4-suppressed fatty acid oxidation. Taken together, our results indicate that CXCR4 is a key mediator in tubular cell senescence and renal fibrosis. CXCR4 promotes tubular cell senescence and renal fibrosis by inducing ß-catenin and inhibiting fatty acid metabolism. Our findings provide a new theory for tubular cell injury in renal fibrosis.


Asunto(s)
Riñón , Receptores CXCR4 , Insuficiencia Renal Crónica , beta Catenina , beta Catenina/metabolismo , Senescencia Celular , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Fibrosis , Riñón/patología , Insuficiencia Renal Crónica/patología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Animales , Ratones
15.
J Cell Biochem ; 125(4): e30541, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38372186

RESUMEN

Epithelial cells (ECs) have been proposed to contribute to myofibroblasts or fibroblasts through epithelial-mesenchymal transition (EMT) during renal fibrosis. However, since EMT may occur dynamically, transiently, and reversibly during kidney fibrosis, conventional lineage tracing based on Cre-loxP recombination in renal ECs could hardly capture the transient EMT activity, yielding inconsistent results. Moreover, previous EMT research has primarily focused on renal proximal tubule ECs, with few reports of distal tubules and collecting ducts. Here, we generated dual recombinases-mediated genetic lineage tracing systems for continuous monitoring of transient mesenchymal gene expression in E-cadherin+ and EpCAM+ ECs of distal tubules and collecting ducts during renal fibrosis. Activation of key EMT-inducing transcription factor (EMT-TF) Zeb1 and mesenchymal markers αSMA, vimentin, and N-cadherin, were investigated following unilateral ureteral obstruction (UUO). Our data revealed that E-cadherin+ and EpCAM+ ECs did not transdifferentiate into myofibroblasts, nor transiently expressed these mesenchymal genes during renal fibrosis. In contrast, in vitro a large amount of cultured renal ECs upregulated mesenchymal genes in response to TGF-ß, a major inducer of EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Humanos , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Fibrosis , Enfermedades Renales/metabolismo , Células Epiteliales/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Am J Physiol Renal Physiol ; 326(1): F86-F94, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881874

RESUMEN

Renal reserve capacity may be compromised following recovery from acute kidney injury (AKI) and could be used to identify impaired renal function in the face of restored glomerular filtration rate (GFR) or plasma creatinine. To investigate the loss of hemodynamic renal reserve responses following recovery in a model of AKI, rats were subjected to left unilateral renal ischemia-reperfusion (I/R) injury and contralateral nephrectomy and allowed to recover for 5 wk. Some rats were treated 24 h post-I/R by hydrodynamic isotonic fluid delivery (AKI-HIFD) of saline through the renal vein, previously shown to improve recovery and inflammation relative to control rats that received saline through the vena cava (AKI-VC). At 5 wk after surgery, plasma creatinine and GFR recovered to levels observed in uninephrectomized sham controls. Baseline renal blood flow (RBF) was not different between AKI or sham groups, but infusion of l-arginine (7.5 mg/kg/min) significantly increased RBF in sham controls, whereas the RBF response to l-arginine was significantly reduced in AKI-VC rats relative to sham rats (22.6 ± 2.2% vs. 13.8 ± 1.8%, P < 0.05). RBF responses were partially protected in AKI-HIFD rats relative to AKI-VC rats (17.0 ± 2.2%) and were not significantly different from sham rats. Capillary rarefaction observed in AKI-VC rats was significantly protected in AKI-HIFD rats. There was also a significant increase in T helper 17 cell infiltration and interstitial fibrosis in AKI-VC rats versus sham rats, which was not present in AKI-HIFD rats. These data suggest that recovery from AKI results in impaired hemodynamic reserve and that associated CKD progression may be mitigated by HIFD in the early post-AKI period.NEW & NOTEWORTHY Despite the apparent recovery of renal filtration function following acute kidney injury (AKI) in rats, the renal hemodynamic reserve response is significantly attenuated, suggesting that clinical evaluation of this parameter may provide information on the potential development of chronic kidney disease. Treatments such as hydrodynamic isotonic fluid delivery, or other treatments in the early post-AKI period, could minimize chronic inflammation or loss of microvessels with the potential to promote a more favorable outcome on long-term function.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Ratas , Animales , Hidrodinámica , Creatinina , Ratas Sprague-Dawley , Riñón , Lesión Renal Aguda/terapia , Hemodinámica/fisiología , Inflamación , Arginina , Modelos Animales de Enfermedad
17.
Am J Physiol Renal Physiol ; 326(3): F394-F410, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153851

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.


Asunto(s)
Obstrucción Ureteral , Animales , Ratones , Fibrosis , Expresión Génica , Riñón , Ratones Noqueados
18.
Kidney Int ; 106(2): 226-240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789037

RESUMEN

Persistently elevated glycolysis in kidney has been demonstrated to promote chronic kidney disease (CKD). However, the underlying mechanism remains largely unclear. Here, we observed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key glycolytic enzyme, was remarkably induced in kidney proximal tubular cells (PTCs) following ischemia-reperfusion injury (IRI) in mice, as well as in multiple etiologies of patients with CKD. PFKFB3 expression was positively correlated with the severity of kidney fibrosis. Moreover, patients with CKD and mice exhibited increased urinary lactate/creatine levels and kidney lactate, respectively. PTC-specific deletion of PFKFB3 significantly reduced kidney lactate levels, mitigated inflammation and fibrosis, and preserved kidney function in the IRI mouse model. Similar protective effects were observed in mice with heterozygous deficiency of PFKFB3 or those treated with a PFKFB3 inhibitor. Mechanistically, lactate derived from PFKFB3-mediated tubular glycolytic reprogramming markedly enhanced histone lactylation, particularly H4K12la, which was enriched at the promoter of NF-κB signaling genes like Ikbkb, Rela, and Relb, activating their transcription and facilitating the inflammatory response. Further, PTC-specific deletion of PFKFB3 inhibited the activation of IKKß, I κ B α, and p65 in the IRI kidneys. Moreover, increased H4K12la levels were positively correlated with kidney inflammation and fibrosis in patients with CKD. These findings suggest that tubular PFKFB3 may play a dual role in enhancing NF-κB signaling by promoting both H4K12la-mediated gene transcription and its activation. Thus, targeting the PFKFB3-mediated NF-κB signaling pathway in kidney tubular cells could be a novel strategy for CKD therapy.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Glucólisis , Histonas , FN-kappa B , Fosfofructoquinasa-2 , Insuficiencia Renal Crónica , Daño por Reperfusión , Animales , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Humanos , Ratones , Masculino , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , FN-kappa B/metabolismo , Histonas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Transducción de Señal , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/metabolismo , Ácido Láctico/metabolismo , Riñón/patología , Riñón/metabolismo
19.
Biochem Biophys Res Commun ; 715: 149997, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678782

RESUMEN

The immune system is involved in hypertension development with different immune cells reported to have either pro or anti-hypertensive effects. In hypertension, immune cells have been thought to infiltrate blood pressure-regulating organs, resulting in either elevation or reduction of blood pressure. There is controversy over whether macrophages play a detrimental or beneficial role in the development of hypertension, and the few existing studies have yielded conflicting results. This study aimed to determine the effects of angiotensin II (Ang II) salt-induced hypertension on renal immune cells and to determine whether renal macrophages are involved in the induction of hypertension. Hypertension was induced by administration of Ang II and saline for two weeks. The effects of hypertension on kidney immune cells were assessed using flow cytometry. Macrophage infiltration in the kidney was assessed by immunohistochemistry and kidney fibrosis was assessed using trichrome stain and kidney real time-qPCR. Liposome encapsulated clodronate was used to deplete macrophages in C57BL/6J mice and investigate the direct role of macrophages in hypertension induction. Ang II saline mice group developed hypertension, had increased renal macrophages, and had increased expression of Acta2 and Col1a1 and kidney fibrotic areas. Macrophage depletion blunted hypertension development and reduced the expression of Acta2 and Col1a1 in the kidney and kidney fibrotic areas in Ang II saline group. The results of this study demonstrate that macrophages infiltrate the kidneys and increase kidney fibrosis in Ang II salt-induced hypertension, and depletion of macrophages suppresses the development of hypertension and decreases kidney fibrosis. This indicates that macrophages play a direct role in hypertension development. Hence macrophages have a potential to be considered as therapeutic target in hypertension management.


Asunto(s)
Angiotensina II , Modelos Animales de Enfermedad , Fibrosis , Hipertensión , Riñón , Macrófagos , Animales , Ratones , Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/patología , Hipertensión/metabolismo , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/efectos adversos
20.
Biochem Biophys Res Commun ; 733: 150425, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053104

RESUMEN

Fibroblast growth factor 21 (FGF21), a well-known regulator of metabolic disorders, exhibits the potential to prevent renal fibrosis by negatively regulating the transforming growth factor ß (TGF-ß)/Smad3 signaling pathway. Gemigliptin and other dipeptidyl peptidase-4 inhibitors are frequently used for the management of patients with type 2 diabetes. However, the protective effect of gemigliptin against renal fibrosis, particularly its potential to upregulate the expression of FGF21, remains incompletely understood. This study assessed the renoprotective effects of gemigliptin against TGF-ß-induced renal fibrosis by enhancing the expression of FGF21 in the cultured human proximal tubular epithelial cell line HK-2. Treatment with FGF21 effectively prevented TGF-ß-induced renal fibrosis by attenuating the TGF-ß/Smad3 signaling pathway. Similarly, gemigliptin exhibited protective effects against TGF-ß-induced renal fibrosis by mitigating TGF-ß/Smad3 signaling through the upregulation of FGF21 expression. However, the protective effects of gemigliptin were blocked when FGF21 expression was knocked down in TGF-ß-treated HK-2 cells. These results indicate that gemegliptin has the potential to exhibit protective effects against TGF-ß-induced renal fibrosis by elevating FGF21 expression levels in cultured human proximal tubular epithelial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA