Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 455: 116263, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36195136

RESUMEN

Because exposure to bisphenol A (BPA) has been linked to health problems in humans and wildlife, BPA analogues have been synthesized to be considered as replacement molecules. We here have examined estrogenic activity of BPA and five of its analogues, BPAF, BPE, BPC, BPC-Cl, and BPS by a combination of zebrafish-based in vivo and in vitro assays. We used transgenic estrogen reporter (5xERE:GFP) fish to study agonistic effects of bisphenols. Exposures to BPA, BPAF, BPE, and BPC, induced GFP expression in estrogen reporter fish at low exposure concentrations in the heart valves and at higher concentrations in the liver, whereas BPC-Cl activated GFP expression mainly in the liver, and BPS faintly in the heart only. The in vivo response was compared to in vitro estrogenicity of bisphenol exposure using reporter cells that express the zebrafish estrogen receptors driving expression of an estrogen response element (ERE)-luciferase reporter. In these cells, BPA, BPAF, BPC, BPE and BPS preferentially activated Esr1, whereas BPC-Cl preferentially activated Esr2a. By quantitative PCR we found that exposure to BPAF induced expression of the classical estrogen target genes vtg1, esr1, and cyp19a1b in a concentration response manner, but the most responsive target gene was f13a1a. Exposure to BPC-Cl resulted in a different expression pattern of vtg1 and f13a1a with an activation at low concentrations, followed by a declining expression at higher concentrations. Because expression of f13a1a was strongly activated by all compounds tested, we suggest including this mRNA as a biomarker for estrogenicity in larval fish. We further showed that exposure to BPAF and BPC-Cl increased E2 levels in zebrafish larvae, indicating that bisphenol exposures result in a feed-forward response that can further augment the estrogenic activity of these compounds.


Asunto(s)
Receptores de Estrógenos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Compuestos de Bencidrilo/toxicidad , Estrona , Estrógenos/toxicidad , Estrógenos/metabolismo , Larva/metabolismo , Luciferasas , ARN Mensajero
2.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480604

RESUMEN

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Asunto(s)
Hemo-Oxigenasa 1/genética , Células Madre Pluripotentes Inducidas/citología , Estrés Oxidativo/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Maleatos/administración & dosificación , Maleatos/toxicidad , Persona de Mediana Edad , Ácido Oleanólico/administración & dosificación , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidad , ARN Mensajero/genética , Factores de Tiempo
3.
Biotechnol Bioeng ; 117(11): 3265-3276, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32667700

RESUMEN

Natural oxygen gradients occur in tissues of biological organisms and also in the context of three-dimensional (3D) in vitro cultivation. Oxygen diffusion limitation and metabolic oxygen consumption by embedded cells produce areas of hypoxia in the tissue/matrix. However, reliable systems to detect oxygen gradients and cellular response to hypoxia in 3D cell culture systems are still missing. In this study, we developed a system for visualization of oxygen gradients in 3D using human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) modified to stably express a fluorescent genetically engineered hypoxia sensor HRE-dUnaG. Modified cells retained their stem cell characteristics in terms of proliferation and differentiation capacity. The hypoxia-reporter cells were evaluated by fluorescence microscopy and flow cytometry under variable oxygen levels (2.5%, 5%, and 7.5% O2 ). We demonstrated that reporter hAD-MSCs output is sensitive to different oxygen levels and displays fast decay kinetics after reoxygenation. Additionally, the reporter cells were encapsulated in bulk hydrogels with a variable cell number, to investigate the sensor response in model 3D cell culture applications. The use of hypoxia-reporting cells based on MSCs represents a valuable tool for approaching the genuine in vivo cellular microenvironment and will allow a better understanding of the regenerative potential of AD-MSCs.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas de Cultivo Tridimensional de Células/métodos , Hipoxia de la Célula/fisiología , Células Madre Mesenquimatosas , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología
4.
Biotechnol Bioeng ; 117(5): 1470-1482, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31956989

RESUMEN

Rapid, efficient, and robust quantitative analyses of dynamic apoptotic events are essential in a high-throughput screening workflow. Currently used methods have several bottlenecks, specifically, limitations in available fluorophores for downstream assays and misinterpretation of statistical image data analysis. In this study, we developed cytochrome-C (Cyt-C) and caspase-3/-8 reporter cell lines using lung (PC9) and breast (T47D) cancer cells, and characterized them from the response to apoptotic stimuli. In these two reporter cell lines, the spatial fluorescent signal translocation patterns served as reporters of activations of apoptotic events, such as Cyt-C release and caspase-3/-8 activation. We also developed a vision-based, tunable, automated algorithm in MATLAB to implement the robust and accurate analysis of signal translocation in single or multiple cells. Construction of the reporter cell lines allows live monitoring of apoptotic events without the need for any other dyes or fixatives. Our algorithmic implementation forgoes the use of simple image statistics for more robust analytics. Our optimized algorithm can achieve a precision greater than 90% and a sensitivity higher than 85%. Combining our automated algorithm with reporter cells bearing a single-color dye/fluorophore, we expect our approach to become an integral component in the high-throughput drug screening workflow.


Asunto(s)
Algoritmos , Apoptosis/fisiología , Técnicas Citológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Biomarcadores/análisis , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Humanos , Microscopía Fluorescente
5.
Mol Ther ; 27(2): 287-299, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30573301

RESUMEN

Chimeric antigen receptor (CAR)-T cell immunotherapy is under intense preclinical and clinical investigation, and it involves a rapidly increasing portfolio of novel target antigens and CAR designs. We established a platform that enables rapid and high-throughput CAR-screening campaigns with reporter cells derived from the T cell lymphoma line Jurkat. Reporter cells were equipped with nuclear factor κB (NF-κB) and nuclear factor of activated T cells (NFAT) reporter genes that generate a duplex output of enhanced CFP (ECFP) and EGFP, respectively. As a proof of concept, we modified reporter cells with CD19-specific and ROR1-specific CARs, and we detected high-level reporter signals that allowed distinguishing functional from non-functional CAR constructs. The reporter data were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary CAR-T cells (21 days). We challenged the reporter platform to a large-scale screening campaign on a ROR1-CAR library, and we showed that reporter cells retrieved a functional CAR variant that was present with a frequency of only 6 in 1.05 × 106. The data illustrate the potential to implement this reporter platform into the preclinical development path of novel CAR-T cell products and to inform and accelerate the selection of lead CAR candidates for clinical translation.


Asunto(s)
Biblioteca de Genes , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoterapia/métodos , Células Jurkat , Ratones , Neoplasias/metabolismo , Neoplasias/terapia , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo
6.
Arch Toxicol ; 93(10): 2895-2911, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31552476

RESUMEN

Adaptive stress response pathways play a key role in the switch between adaptation and adversity, and are important in drug-induced liver injury. Previously, we have established an HepG2 fluorescent protein reporter platform to monitor adaptive stress response activation following drug treatment. HepG2 cells are often used in high-throughput primary toxicity screening, but metabolizing capacity in these cells is low and repeated dose toxicity testing inherently difficult. Here, we applied our bacterial artificial chromosome-based GFP reporter cell lines representing Nrf2 activation (Srxn1-GFP and NQO1-GFP), unfolded protein response (BiP-GFP and Chop-GFP), and DNA damage response (p21-GFP and Btg2-GFP) as long-term differentiated 3D liver-like spheroid cultures. All HepG2 GFP reporter lines differentiated into 3D spheroids similar to wild-type HepG2 cells. We systematically optimized the automated imaging and quantification of GFP reporter activity in individual spheroids using high-throughput confocal microscopy with a reference set of DILI compounds that activate these three stress response pathways at the transcriptional level in primary human hepatocytes. A panel of 33 compounds with established DILI liability was further tested in these six 3D GFP reporters in single 48 h treatment or 6 day daily repeated treatment. Strongest stress response activation was observed after 6-day repeated treatment, with the BiP and Srxn1-GFP reporters being most responsive and identified particular severe-DILI-onset compounds. Compounds that showed no GFP reporter activation in two-dimensional (2D) monolayer demonstrated GFP reporter stress response activation in 3D spheroids. Our data indicate that the application of BAC-GFP HepG2 cellular stress reporters in differentiated 3D spheroids is a promising strategy for mechanism-based identification of compounds with liability for DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Diferenciación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Daño del ADN/efectos de los fármacos , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Células Hep G2 , Hepatocitos/patología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Microscopía Confocal/métodos , Esferoides Celulares/patología , Estrés Fisiológico/efectos de los fármacos
7.
J Neuroinflammation ; 14(1): 59, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28320424

RESUMEN

BACKGROUND: Triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) are genetically linked to Alzheimer's disease. Here, we investigated whether human ApoE mediates signal transduction through human and murine TREM2 and sought to identify a TREM2-binding domain in human ApoE. METHODS: To investigate cell signaling through TREM2, a cell line was used which expressed an NFAT-inducible ß-galactosidase reporter and human or murine TREM2, fused to CD8 transmembrane and CD3ζ intracellular signaling domains. ELISA-based binding assays were used to determine binding affinities of human ApoE isoforms to human TREM2 and to identify a TREM2-binding domain in ApoE. RESULTS: ApoE was found to be an agonist to human TREM2 with EC50 in the low nM range, and to murine TREM2 with reduced potency. In the reporter cells, TREM2 expression was lower than in nontransgenic mouse brain. Human ApoE isoforms ε2, ε3, and ε4 bound to human TREM2 with K d in the low nM range. The binding was displaced by an ApoE-mimetic peptide (amino acids 130-149). CONCLUSIONS: An ApoE-mediated dose-dependent signal transduction through TREM2 in reporter cells was demonstrated, and a TREM2-binding region in ApoE was identified. The relevance of an ApoE-TREM2 receptor signaling pathway to Alzheimer's disease is discussed.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Factores de Edad , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Apolipoproteínas E/genética , Línea Celular Transformada , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Modelos Moleculares , Análisis por Matrices de Proteínas , Unión Proteica/genética , Dominios Proteicos/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Inmunológicos/genética , Factores de Riesgo , Linfocitos T/metabolismo
8.
Methods Mol Biol ; 2755: 31-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319567

RESUMEN

In vivo oxygen availability varies widely between cellular microenvironments, depending on the tissue of origin and its cellular niche. It has long been known that too high or too low oxygen concentrations can act as a biological stressor. Thus, the precise control of oxygen availability should be a consideration for cell culture optimization, especially in the field of three-dimensional (3D) cell culture. In this chapter, we describe a system for visualizing oxygen limitations at a cellular level using human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) that were genetically modified to express a fluorescent hypoxia sensor. This sensor can detect the activation of hypoxia-induced factors (HIF) transcription factors that lead to the expression of the oxygen-independent fluorescent protein, UnaG, at low oxygen concentrations. The response of these hypoxia reporter cells can be evaluated in two-dimensional (2D) and 3D cultivation platforms during exposure to hypoxia (1% O2) and normoxia (21% O2) using fluorescence microscopy and flow cytometry. We show that hypoxia reporter MSCs exhibit a hypoxia-induced fluorescence signal in both 2D and 3D cultivation platforms with fast decay kinetics after reoxygenation, rendering it a valuable tool for studying the cellular microenvironment and regenerative potential of hAD-MSCs in an in vivo-like setting.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Hipoxia , Humanos , Oxígeno , Colorantes , Técnicas de Cultivo de Célula
9.
Food Chem ; 426: 136588, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352713

RESUMEN

While the "farm to fork" strategy ticks many boxes in the sustainability agenda, it does not go far enough in addressing how we can improve crop nutraceutical quality. Here, we explored whether supplementary ultraviolet (UV) radiation exposure during growth of broccoli and Chinese cabbage can induce bioactive tryptophan- and glucosinolate-specific metabolite accumulation thereby enhancing Aryl hydrocarbon receptor (AhR) activation in human intestinal cells. By combining metabolomics analysis of both plant extracts and in vitro human colonic fermentation extracts with AhR reporter cell assay, we reveal that human colonic fermentation of UVB-exposed Chinese cabbage led to enhanced AhR activation in human intestinal cells by 23% compared to plants grown without supplementary UV. Thus, by exploring aspects beyond "from farm to fork", our study highlights a new strategy to enhance nutraceutical quality of Brassicaceae, while also providing new insights into the effects of cruciferous vegetables on human intestinal health.


Asunto(s)
Brassica , Verduras , Humanos , Fermentación , Receptores de Hidrocarburo de Aril , Granjas
10.
Front Immunol ; 13: 1035556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532058

RESUMEN

BAFF (B cell activation factor of the TNF family/B lymphocyte stimulator, BLyS) and APRIL (a proliferation-inducing ligand) are targeted by atacicept, a decoy receptor consisting of the extracellular domain of TACI (transmembrane activator and calcium-modulator and cyclophilin (CAML) interactor) fused to the Fc portion of human IgG1. The purpose of the study was to characterize free and ligand-bound atacicept in humans. Total and active atacicept in serum of healthy volunteers receiving a single dose of subcutaneous atacicept or in patients treated weekly for one year were measured by ELISA, Western blot, or cell-based assays. Pharmacokinetics of free and bound atacicept were predicted based on total atacicept ELISA results. Persistence of complexes of purified atacicept bound to recombinant ligands was also monitored in mice. Results show that unbound or active atacicept in human serum exceeded 0.1 µg/ml for one week post administration, or throughout a 1-year treatment with weekly administrations. After a single administration of atacicept, endogenous BAFF bound to atacicept was detected after 8 h then increased about 100-fold within 2 to 4 weeks. Endogenous heteromers of BAFF and APRIL bound to atacicept also accumulated, but atacicept-APRIL complexes were not detected. In mice receiving intravenous injections of purified complexes pre-formed in vitro, atacicept-BAFF persisted longer (more than a week) than atacicept-APRIL (less than a day). Thus, only biologically inactive BAFF and BAFF-APRIL heteromers accumulate on atacicept in vivo. The measure of active atacicept provides further support for the once-weekly dosing regimen implemented in the clinical development of atacicept.


Asunto(s)
Inmunoglobulina G , Activación de Linfocitos , Humanos , Ratones , Animales , Ligandos , Proteínas Recombinantes de Fusión/farmacología
11.
Front Pharmacol ; 13: 869649, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479316

RESUMEN

Extracellular vesicles (EVs) play an important role in intercellular communication and regulation of cells, especially in the immune system where EVs can participate in antigen presentation and may have adjuvant effects. We aimed to identify small molecule compounds that can increase EV release and thereby enhance the immunogenicity of vaccines. We utilized a THP-1 reporter cell line engineered to release EV-associated tetraspanin (CD63)-Turbo-luciferase to quantitatively measure EVs released in culture supernatants as a readout of a high throughput screen (HTS) of 27,895 compounds. In parallel, the cytotoxicity of the compounds was evaluated by PrestoBlue dye assay. For screening immunostimulatory potency, we performed two additional independent HTS on the same compound library using NF-κB and interferon-stimulated response element THP-1 reporter cell lines. Hit compounds were then identified in each of the 3 HTS's, using a "Top X″ and a Gaussian Mixture Model approach to rule out false positive compounds and to increase the sensitivity of the hit selection. Thus, 644 compounds were selected as hits which were further evaluated for induction of IL-12 in murine bone-marrow derived dendritic cells (mBMDCs) and for effects of cell viability. The resulting 130 hits were then assessed from a medicinal chemistry perspective to remove compounds with functional group liabilities. Finally, 80 compounds were evaluated as vaccine adjuvants in vivo using ovalbumin as a model antigen. We analyzed 18 compounds with adjuvant activity for their ability to induce the expression of co-stimulatory molecules on mBMDCs. The full complement of data was then used to cluster the compounds into 4 distinct biological activity profiles. These compounds were also evaluated for quantitation of EV release and spider plot overlays were generated to compare the activity profiles of compounds within each cluster. This tiered screening process identified two compounds that belong to the 4-thieno-2-thiopyrimidine scaffold with identical screening profiles supporting data reproducibility and validating the overall screening process. Correlation patterns in the adjuvanticity data suggested a role for CD63 and NF-κB pathways in potentiating antigen-specific antibody production. Thus, our three independent cell-based HTS campaigns led to identification of immunostimulatory compounds that release EVs and have adjuvant activity.

12.
Front Bioeng Biotechnol ; 10: 954422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860334

RESUMEN

[This corrects the article DOI: 10.3389/fbioe.2021.611837.].

13.
J Tissue Eng Regen Med ; 16(11): 977-986, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962761

RESUMEN

Three-dimensional (3D) cultivation platforms allow the creation of cell models, which more closely resemble in vivo-like cell behavior. Therefore, 3D cell culture platforms have started to replace conventional two-dimensional (2D) cultivation techniques in many fields. Besides the advantages of 3D culture, there are also some challenges: cultivation in 3D often results in an inhomogeneous microenvironment and therefore unique cultivation conditions for each cell inside the construct. As a result, the analysis and precise control over the singular cell state is limited in 3D. In this work, we address these challenges by exploring ways to monitor oxygen concentrations in gelatin methacryloyl (GelMA) 3D hydrogel culture at the cellular level using hypoxia reporter cells and deep within the construct using a non-invasive optical oxygen sensing spot. We could show that the appearance of oxygen limitations is more prominent in softer GelMA-hydrogels, which enable better cell spreading. Beyond demonstrating novel or space-resolved techniques of visualizing oxygen availability in hydrogel constructs, we also describe a method to create a stable and controlled oxygen gradient throughout the construct using a 3D printed flow-through chamber.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/farmacología , Oxígeno , Técnicas de Cultivo Tridimensional de Células , Metacrilatos , Ingeniería de Tejidos/métodos
14.
Vaccines (Basel) ; 10(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366388

RESUMEN

Artificial antigen-presenting cells (aAPCs) that stably express particular HLA and co-stimulatory molecules by gene transfer have been developed to effectively stimulate T cells. To investigate whether cytochalsin-B-induced membrane vesicles derived from aAPCs (AP-CIMVs) have similar antigen-presenting functions as a cell-free system, T cell responses to different types of antigen presentation were measured using Jurkat reporter cells. First, the aggregation of AP-CIMV, which affects the measurement of function, was inhibited by nuclease treatment to produce uniform AP-CIMVs. The Green fluorescent protein (GFP) expression in Jurkat reporter cells was induced in a dose-dependent manner in groups stimulated with anti-CD3 antibody-coated AP-CIMVs and aAPCs, and anti-CD3/CD28 Dynabead. When Jurkat reporter cells expressing specific T cell receptors were stimulated by AP-CIMVs and aAPCs loaded with CMV pp65 peptide, AP-CIMVs showed similar stimulatory effects to that by aAPC. However, when these Jurkat reporter cells were stimulated by aAPCs endogenously expressing CMV pp65 antigen and their AP-CIMVs, the GFP expression rate by AP-CIMVs was 8.4%, which was significantly lower than 53.2% by aAPCs. Although this study showed a limited T-cell-stimulating effect of AP-CIMVs on endogenously processed antigen presentation, these results provide useful information for the development of improved cell-free systems for T cell stimulation in the future.

15.
Stem Cell Rev Rep ; 17(6): 2193-2209, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415483

RESUMEN

Differentiation of human pluripotent stem cells into insulin-producing stem cell-derived beta cells harbors great potential for research and therapy of diabetes. SOX9 plays a crucial role during development of the pancreas and particularly in the development of insulin-producing cells as SOX9+ cells form the source for NEUROG3+ endocrine progenitor cells. For the purpose of easy monitoring of differentiation efficiencies into pancreatic progenitors and insulin-producing cells, we generated new reporter lines by knocking in a P2A-H-2Kk-F2A-GFP2 reporter gene into the SOX9-locus and a P2A-mCherry reporter gene into the INS-locus mediated by CRISPR/CAS9-technology. The knock-ins enabled co-expression of the endogenous and reporter genes and report on the endogenous gene expression. Furthermore, FACS and MACS enabled the purification of pancreatic progenitors and insulin-producing cells. Using these cell lines, we established a new differentiation protocol geared towards SOX9+ cells to efficiently drive human pluripotent stem cells into glucose-responsive beta cells. Our new protocol offers an alternative route towards stem cell-derived beta cells, pointing out the importance of Wnt/beta-catenin inhibition and the efficacy of EGF for the development of pancreatic progenitors, as well as the significance of 3D culture for the functionality of the generated beta cells.


Asunto(s)
Células Secretoras de Insulina , Células Madre Pluripotentes , Diferenciación Celular/genética , Línea Celular , Humanos , Insulina/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
16.
Front Bioeng Biotechnol ; 9: 611837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614611

RESUMEN

The therapeutic and differentiation potential of human mesenchymal stems cells (hMSCs) makes these cells a promising candidate for cellular therapies and tissue engineering. On the path of a successful medical application of hMSC, the cultivation of cells in a three-dimensional (3D) environment was a landmark for the transition from simple two-dimensional (2D) testing platforms to complex systems that mimic physiological in vivo conditions and can improve hMSC curative potential as well as survival after implantation. A 3D arrangement of cells can be mediated by scaffold materials where cells get entrapped in pores, or by the fabrication of spheroids, scaffold-free self-organized cell aggregates that express their own extracellular matrix. Independently from the cultivation method, cells expanded in 3D experience an inhomogeneous microenvironment. Many gradients in nutrient supply, oxygen supply, and waste disposal from one hand mimic in vivo microenvironment, but also put every cell in the 3D construct in a different context. Since oxygen concentration in spheroids is compromised in a size-dependent manner, it is crucial to have a closer insight on the thresholds of hypoxic response in such systems. In this work, we want to improve our understanding of oxygen availability and consequensing hypoxia onset in hMSC spheroids. Therefore, we utilized human adipose tissue-derived MSCs (hAD-MSCs) modified with a genetical sensor construct to reveal (I) the influence of spheroid production methods and (II) hMSCs cell number per spheroid to detect the onset of hypoxia in aggregates. We could demonstrate that not only higher cell numbers of MSCs, but also spheroid formation method plays a critical role in onset of hypoxia.

17.
Bio Protoc ; 11(5): e3942, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33796616

RESUMEN

The genus Flavivirus within the family Flaviviridae includes many viral species of medical importance, such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV), among others. Presently, the identification of flavivirus-infected cells is based on either the immunolabeling of viral proteins, the application of recombinant reporter replicons and viral genomes, or the use of cell-based molecular reporters of the flaviviral protease NS2B-NS3 activity. Among the latter, our flavivirus-activatable GFP and mNeptune reporters contain a quenching peptide (QP) joined to the fluorescent protein by a linker consisting of a cleavage site for the flavivirus NS2B-NS3 proteases (AAQRRGRIG). When the viral protease cleaves the linker, the quenching peptide is removed, and the fluorescent protein adopts a conformation promoting fluorescence. Here we provide a detailed protocol for the generation, selection and implementation of stable BHK-21 cells expressing our flavivirus genetically-encoded molecular reporters, suitable to monitor the viral infection by live-cell imaging. We also describe the image analysis procedures and provide the required software pipelines. Our reporter cells allow the implementation of single-cell infection kinetics as well as plaque assays for both reference and native strains of flaviviruses by live-cell imaging. Graphic abstract: Workflow for the generation and implementation of reporter BHK-21 cells for live imaging of flavivirus infection.

18.
Cancers (Basel) ; 13(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546433

RESUMEN

There are two stable isotopes of hydrogen, protium (1H) and deuterium (2H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (2H)-stress on cancer cells remain largely unexplored. We have examined the anti-proliferative and apoptogenic effects of deuterium oxide (D2O; 'heavy water') together with stress response gene expression profiling in panels of malignant melanoma (A375V600E, A375NRAS, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts. Moreover, we have examined the efficacy of D2O-based pharmacological intervention in murine models of human melanoma tumor growth and metastasis. D2O-induction of apoptosis was substantiated by AV-PI flow cytometry, immunodetection of PARP-1, and pro-caspase 3 cleavage, and rescue by pan-caspase inhibition. Differential array analysis revealed early modulation of stress response gene expression in both A375 melanoma and PANC-1 adenocarcinoma cells elicited by D2O (90%; ≤6 h) (upregulated: CDKN1A, DDIT3, EGR1, GADD45A, HMOX1, NFKBIA, or SOD2 (up to 9-fold; p < 0.01)) confirmed by independent RT-qPCR analysis. Immunoblot analysis revealed rapid onset of D2O-induced stress response phospho-protein activation (p-ERK, p-JNK, p-eIF2α, or p-H2AX) or attenuation (p-AKT). Feasibility of D2O-based chemotherapeutic intervention (drinking water (30% w/w)) was demonstrated in a severe combined immunodeficiency (SCID) mouse melanoma metastasis model using luciferase-expressing A375-Luc2 cells. Lung tumor burden (visualized by bioluminescence imaging) was attenuated by D2O, and inhibition of invasiveness was also confirmed in an in vitro Matrigel transwell invasion assay. D2O supplementation also suppressed tumor growth in a murine xenograft model of human melanoma, and median survival was significantly increased without causing adverse effects. These data demonstrate for the first time that systemic D2O administration impairs growth and metastasis of malignant melanoma through the pharmacological induction of deuterium (2H)-stress.

19.
Heliyon ; 6(10): e05398, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33163667

RESUMEN

Mesenchymal stem cells (MSCs) are expected to be useful in bone regeneration treatment for various diseases and conditions, including cleft lip and palate, fracture, and bone absorption. However, to date, MSCs have failed to produce satisfactory results in clinical settings. This is primarily due to the low rate of induced osteogenic differentiation. To realize MSC potential, it is necessary to establish methods for the isolation of MSC-derived living osteoblasts. However, no osteoblast markers have been reported to date. In an attempt to develop a method for the assessment of osteoblast differentiation, we established reporter human immortalized MSC (hiMSC) lines for in vitro monitoring of bone gamma-carboxyglutamate protein (BGLAP, osteocalcin) expression. To this end, we successfully knocked-in an enhanced green fluorescent protein (EGFP) gene cassette immediately downstream of the first ATG of BGLAP via CRISPR-Cas9, and established hiMSC lines expressing EGFP to monitor osteogenic differentiation. On differentiation day 7, EGFP-positive cells were collected by flow cytometric cell sorting, and the expression of EGFP and endogenous BGLAP was analyzed. During osteogenic differentiation, EGFP upregulation was found to correlate with expression of endogenous BGLAP. Moreover, mineralization was confirmed using Alizarin red-S staining after two weeks of osteogenic differentiation of the modified hiMSC lines. The modified hiMSC lines, as well as the derived differentiated osteoblasts obtained herein, are valuable tools for the monitoring osteoblast gene and protein expression, and can be used to develop novel methods for isolating living osteoblasts.

20.
Biomedicines ; 7(2)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163699

RESUMEN

Hemoglobin (Hb) released during red blood cell lysis can initiate TLR4-dependent signaling and trigger NF-κB activation in surrounding cells. Observations of chronic bleeding in various cancers leads us to hypothesize that Hb and Hb degradation products released from lysed RBC near cancer nests might modulate local TLR4-positive cells. We addressed the hypothesis in vitro by measuring Hb- and biliverdin (Bv)-induced NF-κB signaling in an engineered human TLR4 reporter cell model (HEK-BlueTM hTLR4). Therein, TLR4 stimulation was assessed by measuring NF-κB-dependent secreted alkaline phosphatase (SEAP). hTLR4 reporter cells incubated with 8 ηM lipopolysaccharide (LPS) or 20-40 µM fungal mannoprotein (FM) produced significant amounts of SEAP. hTLR4 reporter cells also produced SEAP in response to human, but not porcine or bovine, Hb. HEK-Blue Null2TM reporter cells lacking TLR4 did not respond to LPS, FM, or Hb. Bv was non-stimulatory in reporter cells. When Bv was added to Hb-stimulated reporter cells, SEAP production was reduced by 95%, but when Bv was applied during LPS and FM stimulation, SEAP production was reduced by 33% and 27%, respectively. In conclusion, Hb initiated NF-κB signaling that was dependent upon TLR4 expression and that Bv can act as a TLR4 antagonist. Moreover, this study suggests that hemorrhage and extravascular hemolysis could provide competitive Hb and Bv signaling to nearby cells expressing TLR4, and that this process could modulate NF-κB signaling in TLR4-positive cancer cells and cancer-infiltrating leukocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA