Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.642
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(14): 3712-3725.e34, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38810646

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.


Asunto(s)
Aminofenoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Simulación del Acoplamiento Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Aminofenoles/farmacología , Aminofenoles/química , Aminofenoles/uso terapéutico , Descubrimiento de Drogas , Microscopía por Crioelectrón , Quinolonas/farmacología , Quinolonas/química , Quinolonas/uso terapéutico , Sitio Alostérico/efectos de los fármacos , Animales , Ligandos
2.
Cell ; 187(15): 3936-3952.e19, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936359

RESUMEN

Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.


Asunto(s)
Duplicación de Gen , Edición Génica , Genoma Humano , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN/genética , Animales , Células Madre Embrionarias/metabolismo , Cromosomas Humanos/genética
3.
Cell ; 186(2): 363-381.e19, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669472

RESUMEN

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Adenocarcinoma/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Procesamiento de Imagen Asistido por Computador , Oncogenes , Microambiente Tumoral
4.
Cell ; 184(10): 2767-2778.e15, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33857423

RESUMEN

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.


Asunto(s)
Discriminación en Psicología/fisiología , Neuronas/fisiología , Corteza Visual Primaria/fisiología , Percepción Visual , Animales , Nivel de Alerta , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa , Estimulación Luminosa , Corteza Visual Primaria/citología , Umbral Sensorial
5.
Cell ; 182(6): 1641-1659.e26, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32822575

RESUMEN

The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Hibridación Fluorescente in Situ/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Línea Celular , Núcleo Celular/genética , Cromatina/genética , Cromosomas Humanos/genética , ADN/genética , ADN/metabolismo , Genómica , Humanos , Procesamiento de Imagen Asistido por Computador , Conformación Molecular , Imagen Multimodal , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , ARN/genética , ARN/metabolismo , Programas Informáticos
6.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730853

RESUMEN

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Asunto(s)
Genoma de Protozoos , Estadios del Ciclo de Vida/genética , Hígado/metabolismo , Hígado/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/genética , Alelos , Amino Azúcares/biosíntesis , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Genotipo , Modelos Biológicos , Mutación/genética , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fenotipo , Plasmodium berghei/metabolismo , Ploidias , Reproducción
7.
Cell ; 175(5): 1418-1429.e9, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454649

RESUMEN

We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.


Asunto(s)
Hierro/metabolismo , Metaloproteínas/metabolismo , Metformina/farmacología , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Prueba de Complementación Genética , Humanos , Metaloproteínas/genética , Saccharomyces cerevisiae/genética
8.
Cell ; 173(1): 11-19, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570991

RESUMEN

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Biología Computacional , Descubrimiento de Drogas , Humanos , Células Secretoras de Insulina/citología , Proteínas/química , Proteínas/metabolismo
9.
Annu Rev Biochem ; 86: 245-275, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301739

RESUMEN

Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.


Asunto(s)
Genoma , Metabolómica/estadística & datos numéricos , Modelos Biológicos , Modelos Estadísticos , Biología de Sistemas/estadística & datos numéricos , Transcriptoma , Bacterias/genética , Bacterias/metabolismo , Hongos/genética , Hongos/metabolismo , Humanos , Cinética , Ingeniería Metabólica , Metabolómica/métodos , Proteómica , Biología de Sistemas/métodos
10.
Cell ; 167(7): 1867-1882.e21, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984733

RESUMEN

Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endorribonucleasas , Retroalimentación , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinasas , ARN Guía de Kinetoplastida/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada
11.
Immunity ; 50(3): 616-628.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30850343

RESUMEN

Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular/inmunología , Proliferación Celular/fisiología , FN-kappa B/inmunología , Animales , Células Productoras de Anticuerpos/inmunología , Línea Celular , Femenino , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Inmunidad Humoral/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL
12.
Am J Hum Genet ; 111(2): 242-258, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211585

RESUMEN

Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.


Asunto(s)
Neoplasias , Humanos , Masculino , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Inmunoterapia , Biomarcadores de Tumor/genética , Células Germinativas/patología
13.
Mol Cell ; 73(4): 699-713.e6, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30554945

RESUMEN

The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Eliminación de Gen , Edición Génica/métodos , Mutagénesis Insercional , Proteína 9 Asociada a CRISPR/metabolismo , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Células HEK293 , Células Hep G2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Motivos de Nucleótidos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(24): e2321758121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830093

RESUMEN

Impulsivity is a personality construct frequently employed to explain and predict important human behaviors. Major inconsistencies in its definition and measurement, however, have led some researchers to call for an outright rejection of impulsivity as a psychological construct. We address this highly unsatisfactory state with a large-scale, preregistered study (N = 1,676) in which each participant completed 48 measures of impulsivity derived from 10 self-report scales and 10 behavioral tasks and reported frequencies of seven impulsivity-related behaviors (e.g., impulsive buying and social media usage); a subsample (N = 196) then completed a retest session 3 mo later. We found that correlations between self-report measures were substantially higher than those between behavioral tasks and between self-report measures and behavioral tasks. Bifactor analysis of these measures exacted one general factor of impulsivity I, akin to the general intelligence factor g, and six specific factors. Factor I was related mainly to self-report measures, had high test-retest reliability, and could predict impulsivity-related behaviors better than existing measures. We further developed a scale named the adjustable impulsivity scale (AIMS) to measure I. AIMS possesses excellent psychometric properties that are largely retained in shorter versions and could predict impulsivity-related behaviors equally well as I. These findings collectively support impulsivity as a stable, measurable, and predictive trait, indicating that it may be too early to reject it as a valid and useful psychological construct. The bifactorial structure of impulsivity and AIMS, meanwhile, significantly advance the conceptualization and measurement of construct impulsivity.


Asunto(s)
Conducta Impulsiva , Humanos , Masculino , Femenino , Adulto , Autoinforme , Personalidad , Adulto Joven , Adolescente , Reproducibilidad de los Resultados , Persona de Mediana Edad
15.
Proc Natl Acad Sci U S A ; 121(2): e2312880120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175867

RESUMEN

We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase. Using the Janus II custom-built supercomputer, the spin-glass correlation function is studied locally. Dramatic fluctuations are found when pairs of sites at the same distance are compared. The scaling of these fluctuations, as the spin-glass coherence length grows with time, is characterized through the computation of the singularity spectrum and its corresponding Legendre transform. A comparatively small number of site pairs controls the average correlation that governs the response to a magnetic field. We explain how this scenario of dramatic fluctuations (at length scales smaller than the coherence length) can be reconciled with the smooth, self-averaging behavior that has long been considered to describe spin-glass dynamics.

16.
Proc Natl Acad Sci U S A ; 121(7): e2308901121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315843

RESUMEN

Global warming increases available sensible and latent heat energy, increasing the thermodynamic potential wind intensity of tropical cyclones (TCs). Supported by theory, observations, and modeling, this causes a shift in mean TC intensity, which tends to manifest most clearly at the greatest intensities. The Saffir-Simpson scale for categorizing damage based on the wind intensity of TCs was introduced in the early 1970s and remains the most commonly used metric for public communication of the level of wind hazard that a TC poses. Because the scale is open-ended and does not extend beyond category 5 (70 m/s windspeed or greater), the level of wind hazard conveyed by the scale remains constant regardless of how far the intensity extends beyond 70 m/s. This may be considered a weakness of the scale, particularly considering that the destructive potential of the wind increases exponentially. Here, we consider how this weakness becomes amplified in a warming world by elucidating the past and future increases of peak wind speeds in the most intense TCs. A simple extrapolation of the Saffir-Simpson scale is used to define a hypothetical category 6, and we describe the frequency of TCs, both past and projected under global warming, that would fall under this category. We find that a number of recent storms have already achieved this hypothetical category 6 intensity and based on multiple independent lines of evidence examining the highest simulated and potential peak wind speeds, more such storms are projected as the climate continues to warm.

17.
Proc Natl Acad Sci U S A ; 121(7): e2305035121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315844

RESUMEN

The energy metabolism of the brain is poorly understood partly due to the complex morphology of neurons and fluctuations in ATP demand over time. To investigate this, we used metabolic models that estimate enzyme usage per pathway, enzyme utilization over time, and enzyme transportation to evaluate how these parameters and processes affect ATP costs for enzyme synthesis and transportation. Our models show that the total enzyme maintenance energy expenditure of the human body depends on how glycolysis and mitochondrial respiration are distributed both across and within cell types in the brain. We suggest that brain metabolism is optimized to minimize the ATP maintenance cost by distributing the different ATP generation pathways in an advantageous way across cell types and potentially also across synapses within the same cell. Our models support this hypothesis by predicting export of lactate from both neurons and astrocytes during peak ATP demand, reproducing results from experimental measurements reported in the literature. Furthermore, our models provide potential explanation for parts of the astrocyte-neuron lactate shuttle theory, which is recapitulated under some conditions in the brain, while contradicting other aspects of the theory. We conclude that enzyme usage per pathway, enzyme utilization over time, and enzyme transportation are important factors for defining the optimal distribution of ATP production pathways, opening a broad avenue to explore in brain metabolism.


Asunto(s)
Metabolismo Energético , Glucosa , Humanos , Glucosa/metabolismo , Metabolismo Energético/fisiología , Ácido Láctico/metabolismo , Encéfalo/metabolismo , Astrocitos/metabolismo , Adenosina Trifosfato/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(9): e2309624121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381782

RESUMEN

We propose Multiscale Flow, a generative Normalizing Flow that creates samples and models the field-level likelihood of two-dimensional cosmological data such as weak lensing. Multiscale Flow uses hierarchical decomposition of cosmological fields via a wavelet basis and then models different wavelet components separately as Normalizing Flows. The log-likelihood of the original cosmological field can be recovered by summing over the log-likelihood of each wavelet term. This decomposition allows us to separate the information from different scales and identify distribution shifts in the data such as unknown scale-dependent systematics. The resulting likelihood analysis can not only identify these types of systematics, but can also be made optimal, in the sense that the Multiscale Flow can learn the full likelihood at the field without any dimensionality reduction. We apply Multiscale Flow to weak lensing mock datasets for cosmological inference and show that it significantly outperforms traditional summary statistics such as power spectrum and peak counts, as well as machine learning-based summary statistics such as scattering transform and convolutional neural networks. We further show that Multiscale Flow is able to identify distribution shifts not in the training data such as baryonic effects. Finally, we demonstrate that Multiscale Flow can be used to generate realistic samples of weak lensing data.

19.
Proc Natl Acad Sci U S A ; 121(31): e2403964121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042674

RESUMEN

Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors. Here, we combine simulations and a microscopic force-level theory to build a unified understanding for how key aspects of ring dynamics depend on different tunable molecular properties including backbone rigidity, monomer concentration, degree of traditional entanglement, and molecular weight. Our large-scale molecular dynamics simulations of ring melts with very different backbone stiffnesses reveal unanticipated behaviors which agree well with our generalized theory. This includes a universal master curve for center-of-mass diffusion constants as a function of molecular weight scaled by a chemistry and thermodynamic state-dependent critical molecular weight that generalizes the concept of an entanglement cross-over for linear chains. The key physics is how backbone rigidity and monomer concentration induced changes of the entanglement length, interring packing, degree of interpenetration, and liquid compressibility slow down space-time dynamic-force correlations on macromolecular scales. A power law decay of the center-of-mass diffusion constant with inverse molecular weight squared is the first consequence, followed by an ultraslow activated hopping transport regime. Our results set the stage to address slow dynamics and kinetic arrest in different families of compact synthetic and biological polymeric systems.

20.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557177

RESUMEN

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Asunto(s)
Red en Modo Predeterminado , Roedores , Ratas , Animales , Corteza Cerebral , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA