Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(41): e2311416120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782781

RESUMEN

An evolutionarily conserved region of the TDP-43 low-complexity domain (LCD) twenty residues in length can adopt either an α-helical or ß-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-ß structure. Self-association can be monitored via the formation of phase-separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the LCD. Oxidation disassembles the cross-ß structure, thus eliminating both self-association and phase separation. Here, we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate ß-strand-mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent and that exposure to lipids enhances the ß-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen-bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of LCDs.


Asunto(s)
Proteínas de Unión al ADN , Péptidos , Proteínas de Unión al ADN/metabolismo , Péptidos/química , Dominios Proteicos , Metionina/metabolismo , Estrés Oxidativo
2.
Mol Pharm ; 21(9): 4285-4296, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38922328

RESUMEN

Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.


Asunto(s)
Anticuerpos Biespecíficos , Simulación por Computador , Interleucinas , Interleucinas/química , Interleucinas/metabolismo , Anticuerpos Biespecíficos/química , Espectrometría de Masas/métodos , Anticuerpos Monoclonales/química , Proteínas Recombinantes de Fusión/química , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Modelos Moleculares , Medición de Intercambio de Deuterio/métodos
3.
Bioorg Med Chem ; 111: 117863, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096786

RESUMEN

We designed and synthesized two novel photocaged peroxide compounds, N5TBHP and N6TBHP, featuring nitrogen-containing fused ring coumarin skeletons. Notably, a tetrahydroquinoline fused coumarin derivative, N6TBHP demonstrated significantly higher photocleavage efficiency under visible light at 455 nm compared to N5TBHP, which contains an indoline fused coumarin. This process effectively releases the oxidative stress inducer tert-butylhydroperoxide (TBHP). Additionally, N6TBHP exhibits high resistance to glutathione (GSH), and its UV spectral analysis suggests enhanced intracellular stability due to reduced reactivity with GSH through self-assembly. Furthermore, N6TBHP can release an optimal amount of TBHP into cells under visible light irradiation with minimal cell damage. These properties position N6TBHP as a promising tool for advancing research in intracellular redox signaling.


Asunto(s)
Diseño de Fármacos , Luz , Peróxidos , Especies Reactivas de Oxígeno , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Peróxidos/química , Peróxidos/farmacología , Peróxidos/síntesis química , Estructura Molecular , Relación Estructura-Actividad , terc-Butilhidroperóxido/farmacología , terc-Butilhidroperóxido/química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Procesos Fotoquímicos
4.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000408

RESUMEN

Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.


Asunto(s)
Proteínas NLR , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas NLR/metabolismo , Proteínas NLR/genética , Proteínas NLR/química , Muerte Celular , Mutación , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Dominios Proteicos , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética
5.
Mol Pharm ; 20(9): 4698-4713, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37549226

RESUMEN

Monoclonal antibodies (mAbs) are particularly relevant for therapeutics due to their high specificity and versatility, and mAb-based drugs are hence used to treat numerous diseases. The increased patient compliance of self-administration motivates the formulation of products for subcutaneous (SC) administration. The associated challenge is to formulate highly concentrated antibody solutions to achieve a significant therapeutic effect, while limiting their viscosity and preserving their physicochemical stability. Protein-protein interactions (PPIs) are in fact the root cause of several potential problems concerning the stability, manufacturability, and delivery of a drug product. The understanding of macroscopic viscosity requires an in-depth knowledge on protein diffusion, PPIs, and self-association/aggregation. Here, we study the self-diffusion of different mAbs of the IgG1 subtype in aqueous solution as a function of the concentration and temperature by quasi-elastic neutron scattering (QENS). QENS allows us to probe the short-time self-diffusion of the molecules and therefore to determine the hydrodynamic mAb cluster size and to gain information on the internal mAb dynamics. Small-angle neutron scattering (SANS) is jointly employed to probe structural details and to understand the nature and intensity of PPIs. Complementary information is provided by molecular dynamics (MD) simulations and viscometry, thus obtaining a comprehensive picture of mAb diffusion.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Humanos , Anticuerpos Monoclonales/química , Viscosidad , Inmunoglobulina G/química , Dispersión del Ángulo Pequeño , Simulación de Dinámica Molecular , Soluciones
6.
Mol Pharm ; 20(2): 1323-1330, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36668814

RESUMEN

Monoclonal antibodies (mAbs) are often formulated as high-protein-concentration solutions, which in some cases can exhibit physical stability issues such as high viscosity and opalescence. To ensure that mAb-based drugs can meet their manufacturing, stability, and delivery requirements, it is advantageous to screen for and select mAbs during discovery that are not prone to such behaviors. It has been recently shown that both these macroscopic properties can be predicted to a certain extent from the diffusion interaction parameter (kD), which is a measure of self-association under dilute conditions.1 However, kD can be challenging to measure at the early stage of discovery, where a relatively large amount of a high-purity material, which is required by traditional methods, is often not available. In this study, we demonstrate asymmetric field-flow fractionation (AF4) as a tool to measure self-association and therefore identify antibodies with problematic issues at high concentrations. The principle lies on the ability to concentrate the sample close to the membrane during the injection mode, which can reach formulation-relevant concentrations (>100 mg/mL).2 By analyzing a well-characterized library of commercial antibodies, we show that the measured retention time of the antibodies allows us to pinpoint molecules that exhibit issues at high concentrations. Remarkably, our AF4 assay requires very little (30 µg) sample under dilute conditions and does not need extensive sample purification. Furthermore, we show that a polyethylene glycol (PEG) precipitation assay provides results consistent with AF4 and moreover can further differentiate molecules with issues of opalescence or high viscosity. Overall, our results delineate a two-step strategy for the identification of problematic variants at high concentrations, with AF4 for early developability screening, followed by a PEG assay to validate the problematic molecules and further discriminate between opalescence or high-viscosity issues. This two-step antibody selection strategy enables us to select antibodies early in the discovery process, which are compatible with high-concentration formulations.


Asunto(s)
Anticuerpos Monoclonales , Polietilenglicoles/química
7.
Mol Cell Biochem ; 478(1): 173-183, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35763125

RESUMEN

Apolipoprotein E3 (apoE) is a critical cholesterol transport protein in humans and is composed of two domains: a well characterized N-terminal (NT) domain that harbors the low-density lipoprotein LDL receptor, and a less understood C-terminal (CT) domain that is the site of protein oligomerization and initiation of lipid binding. To better understand the domain structure of apoE, the CT domain was fused to apolipophorin III (apoLp-III), a single-domain, monomeric apolipoprotein of insect origin, to yield a chimeric protein, apoLp-III/CT-apoE. Recombinant apoLp-III/CT-apoE maintained an overall helical content similar to that of the parent proteins, while chemical induced unfolding studies indicated that its structural integrity was not compromised. Analysis using 1-anilinonaphthalene-8-sulfonic acid (ANS), a sensitive fluorescent indicator of exposed hydrophobic sites and protein folding, demonstrated that whereas apoLp-III provided few ANS binding sites, apoLp-III/CT-apoE harbored an abundance of ANS binding sites. Thus, this indicated tertiary structure formation in CT-apoE when part of the chimera. Size-exclusion chromatography and chemical crosslinking analysis demonstrated that while apoLp-III is monomeric, the chimeric protein formed large oligomeric complexes, similar to native apoE3. Compared to apoLp-III, the chimera showed a two-fold enhancement in phospholipid vesicle solubilization rates and a significantly improved ability to bind to lipolyzed low-density lipoprotein, preventing the onset of lipoprotein aggregation at concentrations comparable to that of parent CT-apoE. These results confirm that high lipid binding and self-association sites are located in the CT domain of apoE, and that these properties can be transferred to an unrelated apolipoprotein, demonstrating that these properties operate independently from the NT domain.


Asunto(s)
Apolipoproteínas E , Apolipoproteínas , Humanos , Apolipoproteínas/genética , Apolipoproteínas/química , Apolipoproteínas E/metabolismo , Proteínas Recombinantes/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Unión Proteica
8.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674727

RESUMEN

The effect of arginine on the phase stability of the hen egg-white lysozyme (HEWL) has been studied via molecular dynamics computer simulations, as well as experimentally via cloud-point temperature determination. The experiments show that the addition of arginine increases the stability of the HEWL solutions. The computer simulation results indicate that arginine molecules tend to self-associate. If arginine residues are located on the protein surface, the free arginine molecules stay in their vicinity and prevent the way protein molecules "connect" through them to form clusters. The results are not sensitive to a particular force field and suggest a possible microscopic mechanism of the stabilizing role of arginine as an excipient.


Asunto(s)
Arginina , Muramidasa , Animales , Muramidasa/química , Arginina/química , Simulación de Dinámica Molecular , Proteínas , Pollos/metabolismo
9.
Angew Chem Int Ed Engl ; 62(14): e202301046, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36754831

RESUMEN

A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.

10.
J Biol Chem ; 296: 100596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781743

RESUMEN

Plants use a diverse set of proteins to mitigate various abiotic stresses. The intrinsically disordered protein dehydrin is an important member of this repertoire of proteins, characterized by a canonical amphipathic K-segment. It can also contain other stress-mitigating noncanonical segments-a likely reflection of the extremely diverse nature of abiotic stress encountered by plants. Among plants, the poikilohydric mosses have no inbuilt mechanism to prevent desiccation and therefore are likely to contain unique noncanonical stress-responsive motifs in their dehydrins. Here we report the recurring occurrence of a novel amphipathic helix-forming segment (D-segment: EGφφD(R/K)AKDAφ, where φ represents a hydrophobic residue) in Physcomitrella patens dehydrin (PpDHNA), a poikilohydric moss. NMR and CD spectroscopic experiments demonstrated the helix-forming tendency of the D-segment, with the shuffled D-segment as control. PpDHNA activity was shown to be size as well as D-segment dependent from in vitro, in vivo, and in planta studies using PpDHNA and various deletion mutants. Bimolecular fluorescence complementation studies showed that D-segment-mediated PpDHNA self-association is a requirement for stress abatement. The D-segment was also found to occur in two rehydrin proteins from Syntrichia ruralis, another poikilohydric plant like P. patens. Multiple occurrences of the D-segment in poikilohydric plant dehydrins/rehydrins, along with the experimental demonstration of the role of D-segment in stress abatement, implies that the D-segment mediates unique resurrection strategies, which may be employed by plant dehydrins that are capable of mitigating extreme stress.


Asunto(s)
Bryopsida/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Conformación Proteica en Hélice alfa
11.
Plant Cell Environ ; 45(6): 1876-1890, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312080

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) proteins work as crucial intracellular immune receptors. N-terminal domains of NLRs fall into two groups, coiled-coil (CC) and Toll-interleukin 1 receptor domains, which play critical roles in signal transduction and disease resistance. However, the activation mechanisms of NLRs, and how their N-termini function in immune induction, remain largely unknown. Here, we revealed that the CC domain of a rice NLR Pit contributes to self-association. The Pit CC domain possesses three conserved hydrophobic residues that are known to be involved in oligomer formation in two NLRs, barley MLA10 and Arabidopsis RPM1. Interestingly, the function of these residues in Pit differs from that in MLA10 and RPM1. Although three hydrophobic residues are important for Pit-induced disease resistance against rice blast fungus, they do not participate in self-association or binding to downstream signalling molecules. By homology modelling of Pit using the Arabidopsis ZAR1 structure, we tried to clarify the role of three conserved hydrophobic residues and found that they are located in the predicted α2-helix of the Pit CC domain and involved in the plasma membrane localization. Our findings provide novel insights for understanding the mechanisms of NLR activation as well as the relationship between subcellular localization and immune induction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Resistencia a la Enfermedad , Hordeum/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Transducción de Señal
12.
Mol Pharm ; 19(3): 775-787, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35108018

RESUMEN

The widespread interest in antibody therapeutics has led to much focus on identifying antibody candidates with favorable developability properties. In particular, there is broad interest in identifying antibody candidates with highly repulsive self-interactions in standard formulations (e.g., low ionic strength buffers at pH 5-6) for high solubility and low viscosity. Likewise, there is also broad interest in identifying antibody candidates with low levels of non-specific interactions in physiological solution conditions (PBS, pH 7.4) to promote favorable pharmacokinetic properties. To what extent antibodies that possess both highly repulsive self-interactions in standard formulations and weak non-specific interactions in physiological solution conditions can be systematically identified remains unclear and is a potential impediment to successful therapeutic drug development. Here, we evaluate these two properties for 42 IgG1 variants based on the variable fragments (Fvs) from four clinical-stage antibodies and complementarity-determining regions from 10 clinical-stage antibodies. Interestingly, we find that antibodies with the strongest repulsive self-interactions in a standard formulation (pH 6 and 10 mM histidine) display the strongest non-specific interactions in physiological solution conditions. Conversely, antibodies with the weakest non-specific interactions under physiological conditions display the least repulsive self-interactions in standard formulations. This behavior can be largely explained by the antibody isoelectric point, as highly basic antibodies that are highly positively charged under standard formulation conditions (pH 5-6) promote repulsive self-interactions that mediate high colloidal stability but also mediate strong non-specific interactions with negatively charged biomolecules at physiological pH and vice versa for antibodies with negatively charged Fv regions. Therefore, IgG1s with weakly basic isoelectric points between 8 and 8.5 and Fv isoelectric points between 7.5 and 9 typically display the best combinations of strong repulsive self-interactions and weak non-specific interactions. We expect that these findings will improve the identification and engineering of antibody candidates with drug-like biophysical properties.


Asunto(s)
Anticuerpos Monoclonales , Regiones Determinantes de Complementariedad , Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Inmunoglobulina G/química , Punto Isoeléctrico
13.
Immunol Invest ; 51(6): 1612-1629, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34844506

RESUMEN

The nonreceptor tyrosine kinase ITK is a key component of the T cell receptor (TCR) signaling pathway and is required for cytokine production by CD4+ T cells that have differentiated into Th2 cells. Structural and biochemical studies suggest that contacts between the SH2 and SH3 domains of ITK mediate intermolecular self-association, forming a structure that restrains ITK activity by interfering with interactions between ITK and other components of the TCR signaling pathway. Wild-type (WT) ITK and a panel of ITK mutants containing amino acid substitutions in the SH2 and SH3 domains were tested for self-association and for binding to the adaptor protein SLP76, a key ligand for the ITK SH2 domain. WT and ITK mutants were also expressed in Itk-deficient CD4+ T cells via retroviral-mediated gene delivery to analyze their ability to support TCR signaling and cytokine production by Th2 cells. Specific amino acid substitutions in the ITK SH2 or SH3 domains impaired self-association, with the greatest effects being seen when both intermolecular SH2-SH3 domain contacts were disrupted. Two of the SH2 domain substitutions tested reduced ITK self-association but had no effect on binding to SLP-76. When their function was analyzed in Th2 cells, ITK proteins with diminished self-association activity supported greater IL-4 production and calcium flux in response to TCR stimulation compared to WT ITK. Our findings indicate that intermolecular contacts between ITK molecules can restrain the amplitude of TCR signaling, suggesting ITK is a limiting factor for responses by CD4+ T cells.


Asunto(s)
Transducción de Señal , Dominios Homologos src , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética , Células Th2
14.
J Sep Sci ; 45(12): 2008-2023, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35332679

RESUMEN

The mechanistic modeling of preparative liquid chromatography is still a challenging task. Nonideal thermodynamic conditions may require activity coefficients for the mechanistic description of preparative chromatography. In this work, a chromatographic cation exchange step with a polypeptide having a complex elution behavior in low and high loading situations is modeled. Model calibration in the linear range of the isotherm is done by applying counterion-induced linear gradient elution experiments between pH 3.3 and 4.3. Inverse fitting with column loads up to 25 mg/mLCV is performed for parameter estimation in the nonlinear range. The polypeptide elution peak shows an anti-Langmuirian behavior with fronting under low loading conditions and a switch to a Langmuirian behavior with increasing load. This unusual elution behavior could be described with an extended version of the sigmoidal Self-Association isotherm including two activity coefficients for the polypeptide and counterion in solution. The activity coefficient of the solute polypeptide shows a strong influence on the model parameters and is crucial in the linear and nonlinear range of the isotherm. The modeling procedure results in a unique and robust model parameter set that is sufficient to describe the complex elution behavior and allows modeling over the full isotherm range.


Asunto(s)
Péptidos , Calibración , Cationes , Cromatografía por Intercambio Iónico/métodos , Cromatografía Liquida/métodos , Termodinámica
15.
Biosci Biotechnol Biochem ; 86(4): 444-454, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35134837

RESUMEN

CYP105A1 from Streptomyces griseolus converts vitamin D3 to its biologically active form, 1α,25-dihydroxy vitamin D3. R73A/R84A mutation enhanced the 1α- and 25-hydroxylation activity for vitamin D3, while M239A mutation generated the 1α-hydroxylation activity for vitamin D2. In this study, the stability of six CYP105A1 enzymes, including 5 variants (R73A/R84A, M239A, R73A/R84A/M239A (=TriA), TriA/E90A, and TriA/E90D), was examined. Circular dichroism analysis revealed that M239A markedly reduces the enzyme stability. Protein fluorescence analysis disclosed that these mutations, especially M239A, induce large changes in the local conformation around Trp residues. Strong stabilizing effect of glycerol was observed. Nondenaturing PAGE analysis showed that CYP105A1 enzymes are prone to self-association. Fluorescence analysis using a hydrophobic probe 8-anilino-1-naphthalenesulfonic acid suggested that M239A mutation enhances self-association and that E90A and E90D mutations, in cooperation with M239A, accelerate self-association with little effect on the stability.


Asunto(s)
Proteínas Bacterianas , Sistema Enzimático del Citocromo P-450 , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Vitamina D , Vitaminas
16.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807234

RESUMEN

Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic transformations in vitro and in tumor cells. However, the physicochemical properties of UAs, which could possibly affect their interactions with molecular targets, remain unknown. Therefore, we selected four highly active UAs for the assessment of physicochemical parameters under various pH conditions. We determined the compounds' pKa dissociation constants as well as their potential to self-associate. Both parameters were determined by detailed and complex chemometric analysis of UV-Vis spectra supported by nuclear magnetic resonance (NMR) spectroscopy. The obtained results indicate that general molecular properties of UAs in aqueous media, including their protonation state, self-association ratio, and solubility, are strongly pH-dependent, particularly in the physiological pH range of 6 to 8. In conclusion, we describe the detailed physicochemical characteristics of UAs, which might contribute to their selectivity towards tumour cells as opposed to their effect on normal cells.


Asunto(s)
Equilibrio Ácido-Base , Antineoplásicos , Animales , Antineoplásicos/farmacología , Quimiometría , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos
17.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565975

RESUMEN

Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,ß)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(ß,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(ß,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.


Asunto(s)
Organofosfonatos , Adenina/química , Adenosina Monofosfato , Adenosina Trifosfato , Antivirales/química , Antivirales/farmacología , Quelantes/química , Éteres , Iones , Metales/química , Nucleósidos , Nucleótidos/química , Organofosfonatos/química , Oxígeno , Fosfatos , Azúcares
18.
J Biol Chem ; 295(32): 11161-11173, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32546480

RESUMEN

The integrin family of transmembrane adhesion receptors coordinates complex signaling networks that control the ability of cells to sense and communicate with the extracellular environment. Kindlin proteins are a central cytoplasmic component of these networks, directly binding integrin cytoplasmic domains and mediating interactions with cytoskeletal and signaling proteins. The physiological importance of kindlins is well established, but how the scaffolding functions of kindlins are regulated at the molecular level is still unclear. Here, using a combination of GFP nanotrap association assays, pulldown and integrin-binding assays, and live-cell imaging, we demonstrate that full-length kindlins can oligomerize (self-associate) in mammalian cells, and we propose that this self-association inhibits integrin binding and kindlin localization to focal adhesions. We show that both kindlin-2 and kindlin-3 can self-associate and that kindlin-3 self-association is more robust. Using chimeric mapping, we demonstrate that the F2PH and F3 subdomains are important for kindlin self-association. Through comparative sequence analysis of kindlin-2 and kindlin-3, we identify kindlin-3 point mutations that decrease self-association and enhance integrin binding, affording mutant kindlin-3 the ability to localize to focal adhesions. Our results support the notion that kindlin self-association negatively regulates integrin binding.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Integrinas/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Adhesiones Focales , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos
19.
J Biol Chem ; 295(5): 1181-1194, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31844019

RESUMEN

Ninety-five percent of all transmembrane proteins exist in kinetically trapped aggregation-prone states that have been directly linked to neurodegenerative diseases. Interestingly, the primary sequence almost invariably avoids off-pathway aggregate formation, by folding reliably into its native, thermodynamically stabilized structure. However, with the rising incidence of protein aggregation diseases, it is now important to understand the underlying mechanism(s) of membrane protein aggregation. Micromolecular physicochemical and biochemical alterations in the primary sequence that trigger the formation of macromolecular cross-ß aggregates can be measured only through combinatorial spectroscopic experiments. Here, we developed spectroscopic thermal perturbation with 117 experimental variables to assess how subtle protein sequence variations drive the molecular transition of the folded protein to oligomeric aggregates. Using the Yersinia pestis outer transmembrane ß-barrel Ail as a model, we delineated how a single-residue substitution that alters the membrane-anchoring ability of Ail significantly contributes to the kinetic component of Ail stability. We additionally observed a stabilizing role for interface aliphatics, and that interface aromatics physicochemically contribute to Ail self-assembly and aggregation. Moreover, our method identified the formation of structured oligomeric intermediates during Ail aggregation. We show that the self-aggregation tendency of Ail is offset by the evolution of a thermodynamically compromised primary sequence that balances folding, stability, and oligomerization. Our approach provides critical information on how subtle changes in protein primary sequence trigger cross-ß fibril formation, with insights that have direct implications for deducing the molecular progression of neurodegeneration and amyloidogenesis in humans.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Desplegamiento Proteico , Factores de Virulencia/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Dicroismo Circular , Cinética , Microscopía Electrónica de Rastreo , Modelos Químicos , Mutación , Agregado de Proteínas , Conformación Proteica en Lámina beta/genética , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína/genética , Termodinámica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
J Exp Bot ; 72(18): 6581-6595, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34115862

RESUMEN

Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.


Asunto(s)
Muerte Celular , Proteínas NLR , Proteínas de Plantas , Solanum lycopersicum , Proteínas NLR/genética , Nucleótidos , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA