Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Small ; : e2404231, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943438

RESUMEN

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

2.
Small ; : e2400842, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708784

RESUMEN

The ability to collectively program chiral recognition and the hierarchical self-assembly of molecular and supramolecular building blocks into complex higher-order superstructures is a significant goal in supramolecular chemistry. Metal-organic cages are excellent model systems to examine chiral self-sorting and build hierarchical self-assembly. Herein, details on how limiting the conformational flexibility and incorporating hydrogen bonding functional groups in the ligands can influence chiral self-sorting and hierarchical self-assembly of metal-organic cages are reported. The urea-functionalized axially chiral bis-pyridyl ligands afford high-fidelity in chiral self-sorting in Pd2L4 cages, when they have fewer conformations. Ligand L1, with more conformations, affords mixture of heterochiral and homochiral cages (≈70:30). Among them, the heterochiral cage adopts unusual twisted conformation and self-assembles into 2D sheets, linked by anion coordination between urea and nitrate. Ligand L2, with fewer conformations, affords homochiral cages via high-fidelity chiral self-sorting. The choice of counter anions influences further self-sorting in the solid state: racemate with PF6 - and spontaneously resolves conglomerate with BF4 -. Urea-BF4 hydrogen bonding directs hierarchical self-assembly of the Pd2L4 metal-organic cages into super-cubic networks. The study introduces a new approach in hierarchical self-assembly of metal-organic cages into higher-order networks aided by hydrogen bonding anion coordination with functional ligands.

3.
Chemistry ; 30(39): e202400292, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38769938

RESUMEN

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

4.
Angew Chem Int Ed Engl ; 63(6): e202316200, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38009456

RESUMEN

Due to the ubiquity of chirality in nature, chiral self-assembly involving self-sorting behaviors has remained as one of the most important research topics of interests. Herein, starting from a racemic mixture of SEG-based (SEG=SEGPHOS) chlorogold(I) precursors, a unique chiral butterfly-shape hexadecanuclear gold(I) cluster (Au16 ) with different ratios of RSEG and SSEG ligands is obtained via homoleptic and heterochiral self-sorting. More interestingly, by employing different chlorogold(I) precursors of opposite chirality (such as RSEG -Au2 and SBIN -Au2 (BIN=BINAP)), an unprecedented heteroleptic and heterochiral self-sorting strategy has been developed to give a series of heteroleptic chiral decanuclear gold(I) clusters (Au10 ) with propellor-shape structures. Heterochiral and heteroleptic self-sorting have also been observed between enantiomers of homoleptic chiral Au10 clusters to result in the heteroleptic chiral Au10 clusters via cluster-to-cluster transformation. Incorporation of heteroleptic ligands is found to decrease the symmetry from S4 of homoleptic meso Au10 to C2 of heteroleptic chiral Au10 clusters. The chirality has been transferred from the axial chiral ligands and stored in the heteroleptic gold(I) clusters.

5.
Angew Chem Int Ed Engl ; : e202410219, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949846

RESUMEN

Pd(II)-based low-symmetry coordination cages possessing anisotropic cavities are of great interest. The common strategies employed to achieve such cages utilize either more than one type of symmetrical ligands (e.g., Laa, Lbb, etc.) or only one type of unsymmetrical ligand (e.g., Lab). To significantly enhance the anisotropy, we have designed two unsymmetrical bidentate ligands i.e., Lab and Lcd, aiming a low-symmetry Pd2Lab2Lcd2-type cage. It was accomplished by high-fidelity integrative self-sorting of two different low-symmetry cages having Pd2Lab4 and Pd4Lcd8-type architectures (homoleptic complexes of the designed ligands). Structural constraints and geometry complementarity in the ligand design drive the non-statistical exclusive self-assembly of the Pd2Lab2Lcd2-type cage. By taking advantage of the complemental geometries between ligands, a low-symmetry Pd2Lab2Lcc2-type cage was also obtained. Heteromeric completive self-sorting of three homoleptic assemblies (Pd2Lab4, Pd4Lcc8 and Pd4Lcd8-type cages) into an exclusive mixture of Pd2Lab2Lcd2 and Pd2Lab2Lcc2-type mixed ligated assemblies was demonstrated through cage-to-cage transformations.

6.
Angew Chem Int Ed Engl ; 63(28): e202407095, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38658318

RESUMEN

Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.

7.
Angew Chem Int Ed Engl ; 63(29): e202406654, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660925

RESUMEN

Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.

8.
Angew Chem Int Ed Engl ; 63(15): e202400961, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38284742

RESUMEN

Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex. The maximum separation between both facing chiral units in the assembly is fixed by the intermetallic distance within the lateral bis-ruthenium complex (8.4 Å). The resulting chiral cavity was shown to encapsulate polyaromatic guest molecules, but also to afford a chiral triply interlocked [2]catenane structure. The formation of the latter occurs at high concentration, while its disassembly could be achieved by the addition of a planar achiral molecule. Interestingly the planar achiral molecule exhibits induced circular dichroism signature when trapped within the chiral cavity, thus demonstrating the ability of the cage to induce supramolecular chirogenesis.

9.
Small ; 19(13): e2206474, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599623

RESUMEN

Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.


Asunto(s)
Células Artificiales , Células Artificiales/química , Comunicación Celular , ADN de Cadena Simple , Proteínas de la Membrana , Comunicación
10.
Chemistry ; 29(23): e202203900, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36645137

RESUMEN

Coordination chemistry is a powerful method to synthesize supramolecular cages with distinct features that suit specific applications. This work demonstrates the synthesis of discrete, homochiral FeII 2 L3 cages via chirality-driven self-assembly. Specifically, the installation of chirality - at both the vertices and ligand backbones - allows the formation of discrete, homochiral FeII 2 L3 cages of different sizes via stereochemical control of the iron(II) centers. We observed that larger cages require multiple chiral centra (chiral ligands and vertices). In contrast, the formation of smaller cages is stereoselective with solely chiral ligands. The latter cages can also be formed from two chiral subcomponents, but only when they have matching chirality. Single-crystal X-ray diffraction of these smaller FeII 2 L3 cages revealed several non-covalent interactions as a driving force for narcissistic chiral self-sorting. This expected behavior was confirmed utilizing the shorter ligands in racemic form, yielding discrete, homochiral FeII 2 L3 cages formed in enantiomeric pairs.

11.
Chemistry ; 29(6): e202203085, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300703

RESUMEN

When a racemic mixture of chiral building blocks self-assembles to form discrete molecular or supramolecular cages, the system can adopt either social or narcissistic chiral self-sorting. However, control over such chiral self-sorting is hard to achieve with a desired choice of outcome. Herein, we report anion templated high-fidelity chiral self-sorting during the coordination-driven self-assembly of [Pd2 L4 ] metal-organic cages, with a racemic mixture of an axially chiral ligand. Upon varying the counter-anions, the outcome of the choice of chiral self-sorting, whether social or narcissistic, leading to kinetically favored heterochiral or thermodynamically favored homochiral cages, can be controlled through specific anion encapsulation. Non-encapsulating anion afforded a mixture of all possible diastereomers. Anion exchange enabled structural transformations between the diastereomers and the conversion of the mixture of diastereomers into homochiral diastereomers.

12.
Macromol Rapid Commun ; 44(1): e2200303, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35666548

RESUMEN

Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.


Asunto(s)
Espectrometría de Masas , Modelos Moleculares , Espectroscopía de Resonancia Magnética , Ligandos
13.
Macromol Rapid Commun ; 44(4): e2200709, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36177680

RESUMEN

Mixing low molecular weight gelators (LMWGs) can be used to combine favorable properties of the individual components within a multifunctional gel. Such multicomponent systems are complex enough in themselves but the method of combining components is not commonly considered something to influence self-assembly. Herein, two multicomponent systems comprising of a naphthalene-based dipeptide hydrogelator and one of two modified naphthalene diimides (NDIs), one of which forms gels, and the other does not, are investigated. These systems are probed, examining the structures formed and their gel properties (when preparing a solution from either a mixed powder of both components or by mixing pre-formed solutions of each component) using rheology, small angle neutron scattering (SANS), and absorbance spectroscopy. It is found that by altering the method of preparation, it is can either induce self-sorting or co-assembly within the fibers formed that underpin the gel network.


Asunto(s)
Dipéptidos , Geles/química , Dipéptidos/química , Análisis Espectral
14.
Angew Chem Int Ed Engl ; 62(12): e202217325, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36625790

RESUMEN

Aromatic oligoamide sequences programmed to fold into stable helical conformations were designed to display a linear array of hydrogen-bond donors and acceptors at their surface. Sequences were prepared by solid-phase synthesis. Solution 1 H NMR spectroscopic studies and solid-state crystallographic structures demonstrated the formation of stable hydrogen-bond-mediated dimeric helix bundles that could be either heterochiral (with a P and an M helix) or homochiral (with two P or two M helices). Formation of the hetero- or homochiral dimers could be driven quantitatively using different chlorinated solvents-exemplifying a remarkable case of either social or narcissistic chiral self-sorting or upon imposing absolute handedness to the helices to forbid PM species.

15.
Angew Chem Int Ed Engl ; 62(21): e202302011, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36939317

RESUMEN

PtII complexes have attracted a great deal of interest due to their rich phosphorescent properties. However, these square-planar PtII complexes are far more likely to encounter the problems of lack of metal-induced chirality and emission "aggregation-caused quenching". Herein, soft-bridged binuclear PtII complexes bearing metal-induced planar chirality were synthesized and characterized. These soft bridging ligands with smaller conjugated system would help to not only improve solubility for synthesis and enantioseparation but also introduce point chirality from amino acid for highly efficient diastereoselectivity. Furthermore, the intramolecular Pt-Pt distances could be well regulated by soft bridging ligands, and consequently the phosphorescence quantum yield up to 100 % could be achieved by shortening intramolecular Pt-Pt distance for first time. These complexes can be used as emitters in highly efficient solution-processed organic light-emitting diodes.

16.
Angew Chem Int Ed Engl ; 62(27): e202304279, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37146103

RESUMEN

Self-sorting is commonly observed in complex reaction systems, which has been utilized to guide the formation of single major by-design molecules. However, most studies have been focused on non-covalent systems, and using self-sorting to achieve covalently bonded architectures is still relatively less explored. Herein, we first demonstrated the dynamic nature of spiroborate linkage and systematically studied the self-sorting behavior observed in the transformation between spiroborate-linked well-defined polymeric and molecular architectures, which is enabled by spiroborate bond exchange. The scrambling between a macrocycle and a 1D helical covalent polymer led to the formation of a molecular cage, whose structures are all unambiguously elucidated by single-crystal X-ray diffraction. The results indicate that the molecular cage is the thermodynamically favored product in this multi-component reaction system. This work represents the first example of a 1D polymeric architecture transforming into a shape-persistent molecular cage, driven by dynamic covalent self-sorting. This study will further guide the design of spiroborate-based materials and open the possibilities for the development of novel complex yet responsive dynamic covalent molecular or polymeric systems.

17.
Chemistry ; 28(64): e202201863, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35971799

RESUMEN

Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Nitrocompuestos , Polimerizacion , Polímeros/química
18.
Angew Chem Int Ed Engl ; 61(27): e202203099, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35474631

RESUMEN

Chirality is one of the most important intrinsic properties of (supra)molecules. In this study, we obtained enantiomeric metallo-supramolecular octahedra without using any chiral sources. Such cages were self-assembled by prochiral trispyridine ligand L based on a C3h truxene core and CuII salts. Crystallization of the cages with BF4 - as counterions afforded racemate crystals; while crystallizations of cages with ClO4 - and OTf- as counterions resulted in conglomerates with spontaneous resolution. Three types of chirality were observed in each cage, including planar chirality of the truxene core, axial chirality from the pyridyl and truxene moieties, and propeller chirality of the pyridyl-CuII coordination sites. The cages reported here are among the largest discrete synthetic metallo-supramolecules ever reported with chiral self-sorting behavior. Remarkably, the chiral cages exhibited very slow racemization even at low concentrations, suggesting their high stability in solution.

19.
Angew Chem Int Ed Engl ; 61(19): e202200637, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174943

RESUMEN

The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.

20.
Angew Chem Int Ed Engl ; 61(7): e202115555, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34897921

RESUMEN

Self-assembled coordination cages and metal-organic frameworks have relied extensively on symmetric ligands in their formation. Here we have prepared a relatively simple system employing an unsymmetric ligand that results in two distinct self-assembled structures, a [Fe2 L3 ]4+ helicate and a [Fe4 L6 ]8+ cage composed of 10 interconverting diastereomers and their enantiomers. We show that the steric profile of the ligand controls the complexity, thermodynamics and kinetics of interconversion of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA