Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Más filtros

Intervalo de año de publicación
1.
New Phytol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352455

RESUMEN

Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.

2.
J Exp Bot ; 75(13): 4074-4092, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537200

RESUMEN

Monoculture systems in South East Asia are facing challenges due to climate change-induced extreme weather conditions, leading to significant annual production losses in rice and oil palm. To ensure the stability of these crops, innovative strategies like resilient agroforestry systems need to be explored. Converting oil palm (Elaeis guineensis) monocultures to rice (Oryza sativa)-based intercropping systems shows promise, but achieving optimal yields requires adjusting palm density and identifying rice varieties adapted to changes in light quantity and diurnal fluctuation. This paper proposes a methodology that combines a model of light interception with indoor experiments to assess the feasibility of rice-oil palm agroforestry systems. Using a functional-structural plant model of oil palm, the planting design was optimized to maximize transmitted light for rice. Simulation results estimated the potential impact on oil palm carbon assimilation and transpiration. In growth chambers, simulated light conditions were replicated with adjustments to intensity and daily fluctuation. Three light treatments independently evaluated the effects of light intensity and fluctuation on different rice accessions. The simulation study revealed intercropping designs that significantly increased light transmission for rice cultivation with minimal decrease in oil palm densities compared with conventional designs. The results estimated a loss in oil palm productivity of less than 10%, attributed to improved carbon assimilation and water use efficiency. Changes in rice plant architecture were primarily influenced by light quantity, while variations in yield components were attributed to light fluctuations. Different rice accessions exhibited diverse responses to light fluctuations, indicating the potential for selecting genotypes suitable for agroforestry systems.


Asunto(s)
Arecaceae , Oryza , Oryza/crecimiento & desarrollo , Oryza/fisiología , Arecaceae/crecimiento & desarrollo , Arecaceae/fisiología , Agricultura Forestal/métodos , Agricultura/métodos , Modelos Biológicos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología
3.
Chemistry ; : e202403035, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354660

RESUMEN

Achieving food sustainability is one of the biggest challenges in the new millennium. Plant factory cultivation systems provide an alternative for food sustainability, while they often suffer from algal blooms. The overuse of conventional algaecides has caused significant environmental pollution and concerns about food security. Here, we design a nanoenabled metal-organic algaecide that is self-assembled from natural polyphenols and two functional metal ions for providing shading effects and delivering active ingredients synergistically to suppress algal blooms. Black wattle tannin (BWT) and Fe3+ ions are utilized to develop self-assembled FeBWT nanoalgaecides with significant shading effects for decreasing light transmission (up to 97%) and effectively inhibiting algal photosynthesis. Further, the FeBWT is functionalized with Cu2+ ions (bimetallic Cu/FeBWT) to target the algal cells and release Cu2+ ions via phenolic-mediated cell surface interactions, thus enhancing the inhibition efficiency. Importantly, the biosafety of Cu/FeBWT is demonstrated through toxicity tests on zebrafish and NIH3T3 cells. In our real-world field test, the Cu/FeBWT demonstrates high algal inhibition performance (> 95%, over 30 days), and enhances the accumulation of food nutrients in model plant lettuces. Collectively, the supramolecular metal-organic nanoalgaecide provides a promise for nanoagrochemical application and promoting food sustainability and security.

4.
Oecologia ; 205(3-4): 627-642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39046508

RESUMEN

Light availability and habitat complexity are two key drivers of community assembly. Urbanisation has been shown to affect both, with important consequences to ecological communities. On the intertidal, for instance, studies have shown that light intensity is greater on natural rocky shores than on less complex artificial habitats (seawalls), though different habitats can also experience similar light intensities, for example when shaded by urban structures. Understanding therefore how these factors individually, and combined, affect communities is important to understand the mechanisms driving changes in community structure, and consequently provide solutions to tackle the increasing homogenisation of habitats and lightscapes in urbanised spaces through smart infrastructure designs. Here, we assessed how different light levels affect the recruitment of communities in rock pools and on emergent rock on an intertidal rocky shore. We cleared 30 patches of emergent rock and 30 rock pools and manipulated light using shades with different light transmissions (full light, procedural control, 75%, 35%, and 15% light transmission, full shade) and assessed mobile and sessile communities monthly for 6 months. Effects of reducing light levels were generally stronger on rock than in pools. Fully shaded plots supported double the amount of mobile organisms than plots in full sunlight, in both habitats. Algal cover was higher in pools compared to rock, and at intermediate light levels, but effects varied with site. This study highlights the importance of variable light conditions and different habitats for rocky shore communities, which should be considered in future coastal developments to retain natural biodiversity.


Asunto(s)
Ecosistema , Luz , Luz Solar , Animales
5.
Environ Res ; 262(Pt 1): 119786, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142452

RESUMEN

The artificial light at night (ALAN) exposure has emerged as a significant environmental and public health concern globally. However, there is far less evidence on the health effects of indoor ALAN than on outdoor ALAN. Moreover, evidence on cardiovascular effects of indoor ALAN is more limited. To evaluate the association between short-term exposure to ALAN during sleep with heart rate variability (HRV) in young healthy adults, as well as the mediating role of blood oxygen saturation (SpO2), and to further explore the intervention effects of shading habits, this prospective repeated measurement study was conducted among 81 adults with 150 nights (1324h) of HRV monitoring. HRV and SpO2 were monitored during sleep, concurrently with the measurement of indoor and outdoor ALAN. Shading habits were defined as whether to wear blindfolds or draw bed curtains during sleep, and were collected by questionnaires. Linear mixed-effect model was conducted to assess the association between ALAN exposure and HRV indices. The role of SpO2 in the association was analyzed using mediation analyses. We found that indoor ALAN exposure reduced parasympathetic activity and imbalanced cardiac autonomic function. We also found that the use of outdoor ALAN may underestimate or misestimate the potential health effects of ALAN. A significant mediation effects were observed on standard deviation of normal-to-normal intervals (SDNN; p-value for ACME = 0.014) and the ratio of low frequency power to high frequency power (LF/HF; p-value for ACME = 0.026) through minimum SpO2 after indoor ALAN exposure. The association between indoor ALAN and HRV was more pronounced among participants without shading habits during sleep. This study provides general population-based evidence that short-term exposure to indoor ALAN was significantly associated with impaired HRV, and SpO2 partially mediated the association. Improve shading habits during sleep may mitigate the adverse effects of indoor ALAN.

6.
J Plant Res ; 137(2): 203-213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281225

RESUMEN

A newly found leaf arrangement to reduce self-shading was observed in a Japanese warm-temperate forest. For monoaxial trees that deploy leaves directly on a single stem, leaf arrangements involving progressive elongation of the petiole and progressive increase in deflection angle (the angle between stem and petiole) from the uppermost to the lowermost leaves act to reduce self-shading. However, the progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves should also result in the reduction of self-shading. Nevertheless, the latter leaf arrangement has not been reported previously for any tree species. Four Araliaceae species, namely, Gamblea innovans, Chengiopanax sciadophylloides, Dendropanax trifidus and Fatsia japonica, which are typical monoaxial tree species in Japan, were studied. We examined the crown structure of saplings growing in the light-limited understorey in a Japanese warm-temperate forest. Two evergreen species, Dendropanax trifidus and F. japonica showed progressive petiole elongation and progressive increase in the deflection angle from the uppermost to the lowermost leaves. In contrast, saplings of deciduous species, G. innovans and C. sciadophylloides had a leaf arrangement involving progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves. The leaf arrangement has diversified among members of the same family, but all four studied species develop a crown with little self-shading that is adapted for growth in the light-limited understorey. Although trees are likely to be under the same selective pressure to reduce self-shading, this study revealed that there is flexibility in its morphological realisation, which has been poorly appreciated previously.


Asunto(s)
Fotosíntesis , Árboles , Árboles/anatomía & histología , Japón , Bosques , Hojas de la Planta/anatomía & histología
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811143

RESUMEN

The problem of extracting the three-dimensional (3D) shape and material properties of surfaces from images is considered to be inherently ill posed. It is thought that a priori knowledge about either 3D shape is needed to infer material properties, or knowledge about material properties are needed to derive 3D shape. Here, we show that there is information in images that cospecify both the material composition and 3D shape of light permeable (translucent) materials. Specifically, we show that the intensity gradients generated by subsurface scattering, the shape of self-occluding contours, and the distribution of specular reflections covary in systematic ways that are diagnostic of both the surface's 3D shape and its material properties. These sources of image covariation emerge from being causally linked to a common environmental source: 3D surface curvature. We show that these sources of covariation take the form of "photogeometric constraints," which link variations in intensity (photometric constraints) to the sign and direction of 3D surface curvature (geometric constraints). We experimentally demonstrate that this covariation generates emergent cues that the visual system exploits to derive the 3D shape and material properties of translucent surfaces and demonstrate the potency of these cues by constructing counterfeit images that evoke vivid percepts of 3D shape and translucency. The concepts of covariation and cospecification articulated herein suggest a principled conceptual path forward for identifying emergent cues that can be used to solve problems in vision that have historically been assumed to be ill posed.

8.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732247

RESUMEN

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Azúcares , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de la radiación , Frutas/genética , Frutas/metabolismo , Frutas/efectos de la radiación , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Azúcares/metabolismo , Luz
9.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396654

RESUMEN

Light is one of the most important environmental factors for plant growth. In the production process of tung oil tree cultivation, due to the inappropriate growth of shading conditions, the lower branches are often dry and dead, which seriously affects the yield of tung oil trees. However, little is known about the key factors of light-induced tree photomorphogenesis. In this study, a total of 22 VfBBX family members were identified to provide a reference for candidate genes in tung tree seedlings. All members of the VfBBX family have different numbers of highly conserved B-box domains or CCT domains. Phylogenetic evolution clustered the VfBBX genes into four categories, and the highest density of members was on chromosome 6. Interspecific collinearity analysis suggested that there were six pairs of duplicate genes in VfBBX members, but the expression levels of all family members in different growth and development stages of the tung tree were significantly divergent. After different degrees of shading treatment and physiological data determination of tung tree seedlings, the differential expression level and chlorophyll synthesis genes correlation analysis revealed that VfBBX9 was a typical candidate nuclear localization transcription factor that was significantly differentially expressed in light response. This study systematically identified the VfBBX gene family and provided a reference for studying its molecular function, enhanced the theoretical basis for tung tree breeding, and identified excellent varieties.


Asunto(s)
Aleurites , Aleurites/genética , Aleurites/metabolismo , Filogenia , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas
10.
J Environ Manage ; 355: 120480, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430885

RESUMEN

Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.


Asunto(s)
Cianobacterias , Ecosistema , Plantas , Floraciones de Algas Nocivas , Lagos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA