Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ecol Lett ; 27(4): e14425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577899

RESUMEN

Plants interact in complex networks but how network structure depends on resources, natural enemies and species resource-use strategy remains poorly understood. Here, we quantified competition networks among 18 plants varying in fast-slow strategy, by testing how increased nutrient availability and reduced foliar pathogens affected intra- and inter-specific interactions. Our results show that nitrogen and pathogens altered several aspects of network structure, often in unexpected ways due to fast and slow growing species responding differently. Nitrogen addition increased competition asymmetry in slow growing networks, as expected, but decreased it in fast growing networks. Pathogen reduction made networks more even and less skewed because pathogens targeted weaker competitors. Surprisingly, pathogens and nitrogen dampened each other's effect. Our results show that plant growth strategy is key to understand how competition respond to resources and enemies, a prediction from classic theories which has rarely been tested by linking functional traits to competition networks.


Asunto(s)
Nitrógeno , Plantas
2.
Ecol Lett ; 27(1): e14361, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38217282

RESUMEN

Biodiversity typically increases multiple ecosystem functions simultaneously (multifunctionality) but variation in the strength and direction of biodiversity effects between studies suggests context dependency. To determine how different factors modulate the diversity effect on multifunctionality, we established a large grassland experiment manipulating plant species richness, resource addition, functional composition (exploitative vs. conservative species), functional diversity and enemy abundance. We measured ten above- and belowground functions and calculated ecosystem multifunctionality. Species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Richness increased multifunctionality when communities were assembled with fast-growing species. This was because slow species were more redundant in their functional effects, whereas different fast species promoted different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment and enemy presence. Our study suggests that a shift towards fast-growing communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships.


Asunto(s)
Ecosistema , Nitrógeno , Biodiversidad , Plantas , Pradera
3.
BMC Plant Biol ; 24(1): 234, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561674

RESUMEN

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.


Asunto(s)
Parthenium hysterophorus , Plantas , Clorofila A , Himalayas , Agua , Hojas de la Planta
4.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101480

RESUMEN

Increased atmospheric nitrogen (N) deposition significantly disturbs ecosystem N cycle. Although foliar interception and uptake of N deposition can provide an important alternative N supply to forest ecosystems, the mechanisms regulating foliar N uptake from wet deposition are not fully understood. Here, we selected 19 woody species with a wide range of plant traits from different functional groups and conducted a 15N isotope labelling experiment through brushing 15NH4 + and 15NO3 - solution on canopy leaves. Our findings demonstrate that leaves can directly absorb N from wet deposition within a few hours. The average leaf 15N recoveries were 10% and 28% under 15NH4 + and 15NO3 - treatments across species, respectively, while twig N recoveries were only 1%-7% of leaf N recoveries. Differences in foliar N uptake efficiency among species were closely associated with leaf traits but were little influenced by meteorological conditions or soil nutrient status. Specifically, plants with higher leaf N concentration, larger specific leaf area and lower wax concentration exhibited higher leaf N recovery. Our results indicated that tree canopies could directly absorb N from atmospheric deposition. We highlight the critical role of leaf traits in determining canopy foliar N uptake, which may consequently influence plant competition under elevated N deposition.

5.
Ann Bot ; 134(3): 491-500, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38833416

RESUMEN

BACKGROUND AND SCOPE: Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow trait correlations similar to those of non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. METHODS: We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment, referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. RESULTS: Both SWC and WMA at a given SLA were ~10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis (PCA) revealed that succulent taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) or sclerophyllous (P < 0.0001) taxa along the first PCA axis, which explained 63 % of mean trait expression among species. However, aridity only explained 12 % of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. CONCLUSIONS: Trait coordination in succulent leaf taxa may not follow patterns similar to those of widely studied non-succulent taxa.


Asunto(s)
Hojas de la Planta , Agua , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Agua/metabolismo , Sequías , Clima , Análisis de Componente Principal
6.
Tree Physiol ; 44(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700996

RESUMEN

Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.


Asunto(s)
Bosques , Hojas de la Planta , Transpiración de Plantas , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/fisiología , Transpiración de Plantas/efectos de la radiación , Myrica/fisiología , Fotosíntesis/fisiología , Árboles/fisiología , Árboles/efectos de la radiación
7.
Plants (Basel) ; 13(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611555

RESUMEN

Reduced defense against large herbivores has been suggested to be part of the "island syndrome" in plants. However, empirical evidence for this pattern is mixed. In this paper, we present two studies that compare putative physical and chemical defense traits from plants on the California Channel Islands and nearby mainland based on sampling of both field and common garden plants. In the first study, we focus on five pairs of woody shrubs from three island and three mainland locations and find evidence for increased leaf area, decreased marginal leaf spines, and decreased concentrations of cyanogenic glycosides in island plants. We observed similar increases in leaf area and decreases in defense traits when comparing island and mainland genotypes grown together in botanic gardens, suggesting that trait differences are not solely driven by abiotic differences between island and mainland sites. In the second study, we conducted a common garden experiment with a perennial herb-Stachys bullata (Lamiaceae)-collected from two island and four mainland locations. Compared to their mainland relatives, island genotypes show highly reduced glandular trichomes and a nearly 100-fold reduction in mono- and sesquiterpene compounds from leaf surfaces. Island genotypes also had significantly higher specific leaf area, somewhat lower rates of gas exchange, and greater aboveground biomass than mainland genotypes across two years of study, potentially reflecting a broader shift in growth habit. Together, our results provide evidence for reduced expression of putative defense traits in island plants, though these results may reflect adaptation to both biotic (i.e., the historical absence of large herbivores) and climatic conditions on islands.

8.
Ecology ; 105(4): e4269, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361215

RESUMEN

Understanding the relationship between biodiversity and productivity can be advanced by improving metrics used to quantify biodiversity. Structural diversity, that is, variation of size and form of plant organs, is an emerging biodiversity metric. However, compared with the other biodiversity metrics, its relative importance in specific components of forest productivity, for example, recruitment of new individuals, biomass net change after accounting for mortality, is largely unknown, particularly across a large spatial scale with multiple influential gradients. To address the knowledge gap, we used USDA Forest Service Forest Inventory and Analysis (FIA) data across the southcentral USA from 2008 to 2017. We calculated forest biomass increments due to recruitment and growth and net change in biomass. Then, we quantified the effects of a range of abiotic and biotic variables on the biomass increments and net change. Our results showed that (1) Structural diversity was negatively associated with the two biomass increments and net change in biomass. The negative effects were supported by increased occurrences of insects and diseases with greater structural diversity. (2) Compared with species and functional diversity, structural diversity showed a better association with biomass increments and net change, suggested by its larger absolute values of standardized coefficients, and the effects of structural diversity were negative in contrast to species diversity. (3) The effects of structural diversity, stand age, and elevation differed between natural and planted forests that may stem from the differences in stand development and species composition between the two forest types. Together, structural diversity may represent an important dimension of biodiversity impacts on plant productivity, which could be related to the exacerbated disturbances with greater structural diversity.


Asunto(s)
Biodiversidad , Insectos , Humanos , Animales , Biomasa , Plantas
9.
Life (Basel) ; 14(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39063588

RESUMEN

Shrubs are a key component of desert ecosystems, playing a crucial role in controlling desertification and promoting revegetation, yet their growth is often impeded by drought. Leaf hydraulic traits and economic traits are both involved in the process of water exchange for carbon dioxide. Exploring the characteristics, relationships, and anatomical basis of these two suites of traits is crucial to understanding the mechanism of desert shrubs adapting to the desert arid environment. However, the relationship between these two sets of traits currently remains ambiguous. This study explored the leaf hydraulic, economic, and anatomical traits of 19 desert shrub species. The key findings include the following: Relatively larger LT values and smaller SLA values were observed in desert shrubs, aligning with the "slow strategy" in the leaf economics spectrum. The relatively high P50leaf, low HSMleaf, negative TLPleaf, and positive HSMtlp values indicated that severe embolism occurs in the leaves during the dry season, while most species were able to maintain normal leaf expansion. This implies a "tolerance" leaf hydraulic strategy in response to arid stress. No significant relationship was observed between P50leaf and Kmax, indicating the absence of a trade-off between hydraulic efficiency and embolism resistance. Certain coupling relationships were observed between leaf hydraulic traits and economic traits, both of which were closely tied to anatomical structures. Out of all of the leaf traits, LT was the central trait of the leaf traits network. The positive correlation between C content and WPleaf and HSMleaf, as well as the positive correlation between N content and HSMtlp, suggested that the cost of leaf construction was synergistic with hydraulic safety. The negative correlation between SLA, P content, GCL, and SAI suggested a functional synergistic relationship between water use efficiency and gas exchange rate. In summary, this research revealed that the coupling relationship between leaf hydraulic traits and economic traits was one of the important physiological and ecological mechanisms of desert shrubs for adapting to desert habitats.

10.
Sci Total Environ ; 916: 170258, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246378

RESUMEN

In macroecology, shifting from coarse- to local-scale explanatory factors is crucial for understanding how global change impacts functional diversity (FD). Plants possess diverse traits allowing them to differentially respond across a spectrum of environmental conditions. We aim to assess how macro- to microclimate, stand-scale measured soil properties, forest structure, and management type, influence forest understorey FD at the macroecological scale. Our study covers Italian forests, using thirteen predictors categorized into climate, soil, forest structure, and management. We analyzed five traits (i.e., specific leaf area, plant size, seed mass, belowground bud bank size, and clonal lateral spread) capturing independent functional dimensions to calculate the standardized effect size of functional diversity (SES-FD) for all traits (multi-trait) and for single traits. Multiple regression models were applied to assess the effect of predictors on SES-FD. We revealed that climate, soil, and forest structure significantly drive SES-FD of specific leaf area, plant size, seed mass, and bud bank. Forest management had a limited effect. However, differences emerged between herbaceous and woody growth forms of the understorey layer, with herbaceous species mainly responding to climate and soil features, while woody species were mainly affected by forest structure. Future warmer and more seasonal climate could reduce the diversity of resource economics, plant size, and persistence strategies of the forest understorey. Soil eutrophication and acidification may impact the diversity of regeneration strategies; canopy closure affects the diversity of above- and belowground traits, with a larger effect on woody species. Multifunctional approaches are vital to disentangle the effect of global changes on functional diversity since independent functional specialization axes are modulated by different drivers.


Asunto(s)
Bosques , Suelo , Clima , Plantas , Microclima
11.
Biodivers Data J ; 12: e118128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384789

RESUMEN

Background: Considering the growing demand for plant trait data and taking into account the lack of trait data from Eastern Europe, especially from its steppic region, we launched a new Ukrainian Plant Trait Database (UkrTrait v. 1.0) aiming at collecting all the available plant trait data from Ukraine.To facilitate further use of this database, we linked the trait terminology to the TRY Plant Trait Database, Thesaurus of Plant Characteristics (TOP) and Plant Trait Ontology (TO). For taxa names, we provide the crosswalks between the Ukrainian checklist and international sources, i.e. GBIF Backbone Taxonomy, World Checklist of Vascular Plants (World Checklist of Vascular Plants (World Checklist of Vascular Plants (WCVP), World Flora Online (WFO) and Euro+Med PlantBase. We aim to integrate our data into the relevant global (TRY Plant Trait Database) and pan-European (FloraVeg.EU) databases. The current version of the database is freely available at the Zenodo repository and will be updated in the future. New information: Until now, plant traits for the Ukrainian flora were scattered across literature, often focusing on single species and written mainly in Ukrainian. Additionally, many traits were in grey literature or remained non-digitised, which rendered them inaccessible to the global scientific community. Addressing this gap, our Ukrainian Plant Trait Database (UkrTrait v. 1.0) represents a significant step forward. We compiled and digitised plant traits from local Ukrainian literature sources. Furthermore, we performed our own field and laboratory measurements of various plant traits that were not previously available in literature. In the current version of the UkrTrait, we focus on vascular plant species that are absent from the other European trait databases, with emphasis on species that are representative for the steppe vegetation. Traits assembled from literature include life span (annuals, biennials, perennials), plant height, flowering period (flowering months), life form (by Raunkiaer), plant growth form and others. Our own measured traits include seed mass, seed shape, leaf area, leaf nitrogen concentration and leaf phosphorus concentration. The current version, i.e. UkrTrait v. 1.0, comprises digitised literature data of 287,948 records of 75 traits for 6,198 taxa and our own trait measurements of 2,390 records of 12 traits for 388 taxa.

12.
Sci Total Environ ; 918: 170581, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309334

RESUMEN

Climate warming influences the structure and function of ecosystems. However, the mechanisms of plant water use and gas exchange responses to climate warming have been less studied, especially from the perspective of different functional traits. We conducted a field experiment to investigate how soil warming (+2 °C) affects sap flow and stomatal gas exchange through plant functional traits and nutrient characteristics in a subtropical forest. We measured stomatal gas exchange of trees (Acacia auriculiformis and Schima superba) and shrubs (Castanea henryi and Psychotria asiatica), and monitored long-term sap flow of both tree species. Besides, plant leaf nutrient contents, functional traits, and soil nutrients were also studied. It is demonstrated that soil warming significantly increased maximum sap flow density (Js_max, 35.1 %) and whole-tree transpiration (EL, 46.0 %) of A. auriculiformis, but decreased those of S. superba (15.6 % and 14.9 %, respectively). Warming increased the photosynthetic rate of P. asiatica (18.0 %) and water use efficiency of S. superba (47.2 %). Leaf nutrients and stomatal anatomical characteristics of shrubs were less affected by soil warming. Soil warming increased (+42.7 %) leaf K content of A. auriculiformis in dry season. Decomposition of soil total carbon, total nitrogen, and available nitrogen was accelerated under soil warming, and soil exchangeable Ca2+ and Mg2+ were decreased. Trees changed stomatal and anatomic traits to adapt to soil warming, while shrubs altered leaf water content and specific leaf area under soil warming. Warming had a greater effect on sap flow of trees, as well as on their leaf gas exchange (total effect: -0.27) than on that of shrubs (total effect: 0.06). In summary, our results suggest that the combination of functional and nutrient traits can help to better understand plant water use and gas exchange responses under climate warming.


Asunto(s)
Ecosistema , Suelo , Bosques , Árboles/fisiología , Hojas de la Planta/fisiología , Nitrógeno , Agua/fisiología , Transpiración de Plantas/fisiología
13.
Braz. j. biol ; 75(2): 339-346, 05/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-749681

RESUMEN

The specific leaf area (SLA) has been related to environmental disturbances, showing a positive correlation between the disturbances intensities and SLA in a plant community. These studies, however, assessed the responses of plant community as a whole, neglecting species attributes, such as the position in the vertical stratum of forests. Considering the importance of SLA to understand forest ecological processes, this study aimed to determine the influence of the disturbance regime on the SLA of understory species, considering that, unlike for communities as a whole, an increase in the disturbance intensity implies a decrease in SLA of understory species. This study was conducted in nine understories of seasonal forests in Brazil. The most abundant species were selected and their SLA were evaluated. The variability of SLA among populations in different forests was analyzed by Student’s t-tests. The SLA of the understories (SLAU) was also compared by an adaptation of the Community-weighted mean index. The comparison of species SLA showed significant differences among the populations of understories under different disturbance regime, showing a decrease in SLA with an increase in the disturbance intensity. Similar results were found for the SLA of understories communities (SLAU), corroborating our hypothesis. The correlation between a reduction in species SLA and in SLA of understory with an increase in disturbance intensity, contradicted the trend observed in the literature for the community as a whole. This study highlights the importance of the evaluation of SLA in understories, as an indicator of the successional stage of communities.


A área foliar específica (SLA) tem sido relacionada a distúrbios ambientais, apresentando uma correlação positiva entre a intensidade de perturbação e a SLA da comunidade vegetal. Estes estudos, no entanto, avaliaram as respostas da comunidade vegetal como um todo, negligenciando os atributos por espécies, tais como a posição vertical no estrato florestal. Considerando a importância da SLA para entender os processos ecológicos das florestas, este estudo teve como objetivo determinar a influência do regime de perturbação na SLA de espécies de sub-bosque, cuja hipótese é que, ao contrário de comunidades como um todo, um aumento na intensidade de perturbação implica na diminuição da SLA de espécies de sub-bosque. Este estudo foi realizado em nove sub-bosque de florestas estacionais no Brasil. As espécies mais abundantes foram selecionados e suas SLA foram avaliadas. A variabilidade de SLA entre as populações em diferentes florestas foi analisada pelo teste t de Student. O SLA dos sub-bosque (SLAu) também foi comparado por uma adaptação do índice de média ponderada da comunidade. A comparação de SLA das espécies mostraram diferenças significativas entre as populações de sub-bosque sob um regime de distúrbios diferentes, mostrando um decréscimo na SLA com um aumento na intensidade de perturbação. Resultados semelhantes foram encontrados para o SLA dos sub-bosque (SLAu), corroborando nossa hipótese. A correlação entre a redução no SLA espécies e SLA do sub-bosque com um aumento na intensidade de perturbação contradiz a tendência observada na literatura para a comunidade como um todo. Este estudo destaca a importância da avaliação de SLA em sub-bosque, como um indicador do estágio sucessional das comunidades.


Asunto(s)
Bosques , Hojas de la Planta/anatomía & histología , Brasil , Hojas de la Planta/clasificación , Hojas de la Planta/crecimiento & desarrollo , Especificidad de la Especie
14.
Rev. biol. trop ; 61(1): 351-361, Mar. 2013. ilus
Artículo en Español | LILACS | ID: lil-674087

RESUMEN

Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P. cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P. cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P. cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P. cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an edge effect that could penetrate 17m inside the fragments. We conclude that P. cuadrijuga is a plastic species, able to overcome the stress conditions from anthropogenic transformations, species able to be used in high Andean forest restoration programs.


Polylepis cuadrijuga es una especie leñosa endémica de la cordillera oriental de Colombia, donde la agricultura y el pastoreo han generado la fragmentación de sus bosques. Para determinar si existe un efecto borde en fragmentos ubicados en el Páramo de la Rusia, se establecieron diferencias ambientales y se evaluó las respuestas ecofisiológicas de P. cuadrijuga entre matriz de pastura, borde e interior de los fragmentos, a través de la medición de temperatura ambiental, humedad relativa, capacidad de retención de agua del suelo y radiación fotosintéticamente activa, a lo largo de dos transectos de 50m desde la matriz hacia el interior. En cada sitio se escogieron seis árboles para evaluar el contenido de clorofila, área foliar, biomasa foliar, área foliar específica, anatomía foliar, sanidad y pubescencia. En matriz fue mayor la temperatura y la radiación, condiciones relacionadas con la disminución del AFE y el aumento del contenido de clorofilas, evidenciado por la presencia de un parénquima en empalizada biestratificado. Características ecofisiológicas similares a las expuestas en borde, confirman un efecto de borde que podría penetra unos 17m en el interior de los fragmentos. Se concluye que P. cuadrijuga es una especie plástica, capaz de enfrentar condiciones de estrés generadas por actividades antropogénicas.


Asunto(s)
Clorofila/análisis , Fotosíntesis/fisiología , Rosaceae/fisiología , Colombia , Ecosistema , Humedad , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Rosaceae/anatomía & histología , Rosaceae/química , Temperatura
15.
Ciênc. rural ; 38(8): 2186-2190, Nov. 2008. ilus
Artículo en Portugués | LILACS | ID: lil-511997

RESUMEN

O objetivo deste trabalho foi estimar os parâmetros da análise de crescimento em função de diferentes reguladores vegetais aplicados na parte aérea de plantas de Salvia officinalis L. Para tanto,o experimento foi instalado em casa de vegetação do Departamento de Botânica, Instituto de Biociências, da Universidade Estadual Paulista, Botucatu, SP. Os tratamentos consistiram na pulverização da solução de 100mg L-1 de ácido giberélico (GA3); 100mg L-1 de benzilaminopurina (BAP); 100mg L-1 de ácido 2-cloroetil-fosfônico (ethephon); Stimulate® a 2 por cento (90mg L-1 de cinetina, 50mg L-1 de ácido giberélico e 50mg L-1 de ácido indolilbutírico) e água (testemunha). As aplicações foram realizadas em três épocas, aos 15, 25 e 35 dias após o transplante (d.a.t.) e o crescimento foi avaliado em cinco épocas de coletas a intervalos de 21 dias, sendo a primeira realizada aos 47 (d.a.t.). Foram determinados os parâmetros fisiológicos da análise de crescimento: razão de área foliar (RAF), área foliar específica (AFE), taxa assimilatória líquida (TAL) e taxa de crescimento relativo (TCR). Os resultados mostram que os reguladores de crescimento vegetal influenciaram os parâmetros fisiológicos da análise de crescimento. As plantas tratadas com BAP apresentaram maiores valores de RAF aos 47 d.a.t., já as plantas tratadas com GA3, a TAL apresentou aumento até o 131 d.a.t. A TCR é decrescente para todos os tratamentos com reguladores de crescimento vegetal testados e a testemunha.


The objective of this study was to estimate the effects of different plant regulators on the index growth analysis application of sage plants. An experiment was conducted in a greenhouse with controlled temperature and relative humidity, at the Departmento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil. The experimental design was completely randomized, with five treatments containing three replicates. Treatments consisted of the spraying of the solution of 100mg L-1 of gibberellic acid (GA3); 100mg L-1 of benzylaminopurine (BAP); 100mg L-1 of 2-chloroethyl phosphonic acid (ethephon); Stimulate® at 2 percent (90mg L-1 of kinetin, 50mg L-1 of gibberellic acid and 50mg L-1 of indolylbutyric acid) and water (control). Applications of plant growth regulators were performed in 3 times, at 15, 25, and 35 days after transplanting, and growth was evaluated in five successive harvests at 21-day intervals, performed at 47, 68, 89, 110, and 131 days after transplanting. The following growth index were determined: leaf area ratio (LAR), specific leaf area (SLA), net assimilation rate (NAR), and relative growth rate (RGR). These results suggest that the plant growth regulators influence the index growth analysis. The plants treated with BAP presented increase values of LAR to the 47 days after transplanting. The plants treated with GA3 to NAR presented increase until the 131 days after transplanting. The RGR is decreasing for all the treatments with vegetal regulators tested and the control.

16.
Rev. biol. trop ; 54(4): 1143-1149, dic. 2006. graf
Artículo en Español | LILACS | ID: lil-492168

RESUMEN

Photosynthesis was compared in three altitudinal populations of Espeletia schultzii: 3,100, 3,550 and 4,200 masl. The measured parameters were Rubisco activity (EC 4.1.139), chlorophyll, soluble protein and soluble sugars contents, and specific leaf area (SLA). The 4,200 m population had a higher Rubisco activity (at 4 degrees C) followed by those at 3,550 m and 3,100 m. There were no significant differences between populations at 3,100 m and 3,550 m (ANOVA), but their activities were different from those of the 4,200 m population. Chlorophyll a content decreased slightly with elevation, while chlorophyll b was constant; therefore, the Ra/b ratio decreased with elevation, but not significantly. The leaf soluble sugars content increased along the altitudinal gradient. Leaf protein content did not differ. The SLA decreased with altitude. The increase in Rubisco activity might reflect higher enzyme activation and not higher enzyme protein. The increase in soluble sugars is probably associated to Rubisco activity. Three out of the five measured parameters revealed differences with altitude, suggesting a compromise between a higher metabolic activity and a smaller cellular volume.


Se establece una comparación de algunos parámetros fotosintéticos: actividad Rubisco (Ribulosa 1, 5-bis-fosfato carboxilasa EC 4.1.1.39) contenidos de clorofilas, azúcares solubles totales y proteínas solubles totales y área foliar específica (AFE), en tres poblaciones altitudinales de Espeletia schultzii ubicadas a 3 100, 3 550 y 4 200 msnm. De acuerdo con el análisis de varianza la población a 4 200 m presentó una actividad Rubisco significativamente mayor que las otras dos, en cuyos casos los valores no fueron diferentes. Los contenidos de clorofila a presentan una leve tendencia a la disminución con la altura; mientras que la clorofila b se mantiene constante, razón por la cual la relación a/b (R a/b) disminuye con la elevación, aunque, las diferencias no son significativas. El contenido de azúcares en cada una de las poblaciones estudiadas (gm-2), aumenta con la elevación; las diferencias entre las poblaciones son significativas. Con relación al contenido de proteínas, no existen diferencias entre las poblaciones estudiadas. El área foliar específica (AFE) disminuye significativamente con la altura. Es probable que el incremento en la actividad Rubisco sea producido por una mayor activación de la enzima y no por el mayor contenido de proteína. Los azúcares solubles presentan incremento significativo, este hecho es probable que se encuentre asociado con la actividad Rubisco. De los cinco parámetros fotosintéticos medidos, tres presentan diferencias significativas asociadas con la altitud. Esto representa un compromiso entre una mayor actividad metabólica mantenida en un menor volumen celular.


Asunto(s)
Altitud , Asteraceae/fisiología , Hojas de la Planta/química , Fotosíntesis/fisiología , Asteraceae/química , Carbohidratos/análisis , Clorofila/análisis , Proteínas de Plantas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA