Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(11): 2843-2859.e20, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33991488

RESUMEN

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.


Asunto(s)
Células Madre Totipotentes/citología , Células Madre Totipotentes/metabolismo , Animales , Blastómeros/citología , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/citología , Células Madre Totipotentes/fisiología
2.
Cell ; 184(11): 2878-2895.e20, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33979654

RESUMEN

The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.


Asunto(s)
Precursores del ARN/genética , Sitios de Empalme de ARN/fisiología , Transcripción Genética , Exones/genética , Humanos , Intrones/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Mensajero/metabolismo , Empalmosomas/metabolismo , Transcriptoma
3.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450205

RESUMEN

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética
4.
Annu Rev Biochem ; 89: 333-358, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31815536

RESUMEN

Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.


Asunto(s)
Factores de Empalme de ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo , Dominio Catalítico , Secuencia Conservada , Exones , Humanos , Intrones , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/genética , Empalmosomas/ultraestructura
5.
Annu Rev Biochem ; 89: 359-388, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31794245

RESUMEN

The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.


Asunto(s)
ARN Helicasas DEAD-box/genética , Factores de Empalme de ARN/genética , Empalme del ARN , ARN Nuclear Pequeño/genética , Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo , Dominio Catalítico , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Exones , Humanos , Intrones , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/genética , Empalmosomas/ultraestructura
6.
Cell ; 178(3): 612-623.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348888

RESUMEN

Group II introns are a class of retroelements that invade DNA through a copy-and-paste mechanism known as retrotransposition. Their coordinated activities occur within a complex that includes a maturase protein, which promotes splicing through an unknown mechanism. The mechanism of splice site exchange within the RNA active site during catalysis also remains unclear. We determined two cryo-EM structures at 3.6-Å resolution of a group II intron reverse splicing into DNA. These structures reveal that the branch-site domain VI helix swings 90°, enabling substrate exchange during DNA integration. The maturase assists catalysis through a transient RNA-protein contact with domain VI that positions the branch-site adenosine for lariat formation during forward splicing. These findings provide the first direct evidence of the role the maturase plays during group II intron catalysis. The domain VI dynamics closely parallel spliceosomal branch-site helix movement and provide strong evidence for a retroelement origin of the spliceosome.


Asunto(s)
Empalme del ARN , ADN Polimerasa Dirigida por ARN/química , ARN/química , Dominio Catalítico , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Empalmosomas/química
7.
Cell ; 177(2): 339-351.e13, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879786

RESUMEN

Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.


Asunto(s)
Empalmosomas/fisiología , Empalmosomas/ultraestructura , Dominio Catalítico/fisiología , Microscopía por Crioelectrón/métodos , Exones , Intrones , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Empalme del ARN/fisiología , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
8.
Cell ; 173(4): 1014-1030.e17, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727661

RESUMEN

Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Adenosina Trifosfato/metabolismo , Teorema de Bayes , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Inmunoprecipitación , Precursores del ARN/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Cell ; 173(4): 1031-1044.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727662

RESUMEN

Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.


Asunto(s)
Schizosaccharomyces/genética , Empalmosomas/metabolismo , Transcriptoma , Algoritmos , Intrones , Empalme del ARN , ARN de Hongos/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción
10.
Cell ; 170(4): 701-713.e11, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28781166

RESUMEN

Little is known about the spliceosome's structure before its extensive remodeling into a catalytically active complex. Here, we report a 3D cryo-EM structure of a pre-catalytic human spliceosomal B complex. The U2 snRNP-containing head domain is connected to the B complex main body via three main bridges. U4/U6.U5 tri-snRNP proteins, which are located in the main body, undergo significant rearrangements during tri-snRNP integration into the B complex. These include formation of a partially closed Prp8 conformation that creates, together with Dim1, a 5' splice site (ss) binding pocket, displacement of Sad1, and rearrangement of Brr2 such that it contacts its U4/U6 substrate and is poised for the subsequent spliceosome activation step. The molecular organization of several B-specific proteins suggests that they are involved in negatively regulating Brr2, positioning the U6/5'ss helix, and stabilizing the B complex structure. Our results indicate significant differences between the early activation phase of human and yeast spliceosomes.


Asunto(s)
Empalmosomas/química , Núcleo Celular/química , Microscopía por Crioelectrón , Células HeLa , Humanos , Modelos Moleculares , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/química , Saccharomyces cerevisiae/química , Empalmosomas/ultraestructura
11.
Cell ; 169(5): 918-929.e14, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28502770

RESUMEN

Mechanistic understanding of pre-mRNA splicing requires detailed structural information on various states of the spliceosome. Here we report the cryo electron microscopy (cryo-EM) structure of the human spliceosome just before exon ligation (the C∗ complex) at an average resolution of 3.76 Å. The splicing factor Prp17 stabilizes the active site conformation. The step II factor Slu7 adopts an extended conformation, binds Prp8 and Cwc22, and is poised for selection of the 3'-splice site. Remarkably, the intron lariat traverses through a positively charged central channel of RBM22; this unusual organization suggests mechanisms of intron recruitment, confinement, and release. The protein PRKRIP1 forms a 100-Å α helix linking the distant U2 snRNP to the catalytic center. A 35-residue fragment of the ATPase/helicase Prp22 latches onto Prp8, and the quaternary exon junction complex (EJC) recognizes upstream 5'-exon sequences and associates with Cwc22 and the GTPase Snu114. These structural features reveal important mechanistic insights into exon ligation.


Asunto(s)
Precursores del ARN/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/metabolismo , Exones , Humanos , Intrones , Modelos Moleculares , Empalme del ARN , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/química , Empalmosomas/metabolismo
12.
Cell ; 171(1): 120-132.e12, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28919079

RESUMEN

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.


Asunto(s)
Intrones , Empalmosomas/ultraestructura , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Modelos Moleculares , Precursores del ARN/química , Precursores del ARN/ultraestructura , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Empalmosomas/química
13.
Mol Cell ; 84(14): 2634-2647.e9, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964321

RESUMEN

DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.


Asunto(s)
Empalme Alternativo , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Humanos , Animales , Ratones , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Reparación del ADN por Recombinación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Células HEK293 , Exones , Sistemas CRISPR-Cas , Reparación del ADN , Células HeLa , Daño del ADN
14.
Mol Cell ; 84(8): 1496-1511.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38537639

RESUMEN

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Empalmosomas , Animales , Empalmosomas/genética , Empalmosomas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Intrones/genética , Cromatina/genética , Cromatina/metabolismo , Empalme del ARN , Precursores del ARN/metabolismo , Mamíferos/metabolismo
15.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423013

RESUMEN

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Asunto(s)
Cromotripsis , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteómica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN/genética
16.
Mol Cell ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146933

RESUMEN

Somatic mutations in genes encoding components of the RNA splicing machinery occur frequently in multiple forms of cancer. The most frequently mutated RNA splicing factors in cancer impact intronic branch site and 3' splice site recognition. These include mutations in the core RNA splicing factor SF3B1 as well as mutations in the U2AF1/2 heterodimeric complex, which recruits the SF3b complex to the 3' splice site. Additionally, mutations in splicing regulatory proteins SRSF2 and RBM10 are frequent in cancer, and there has been a recent suggestion that variant forms of small nuclear RNAs (snRNAs) may contribute to splicing dysregulation in cancer. Here, we describe molecular mechanisms by which mutations in these factors alter splice site recognition and how studies of this process have yielded new insights into cancer pathogenesis and the molecular regulation of splicing. We also discuss data linking mutant RNA splicing factors to RNA metabolism beyond splicing.

17.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38521065

RESUMEN

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Asunto(s)
Cromatina , Neoplasias , Animales , Humanos , Ratones , Cromatina/genética , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
18.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37369199

RESUMEN

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Asunto(s)
Síndromes de Tricotiodistrofia , Animales , Ratones , Intrones/genética , Síndromes de Tricotiodistrofia/genética , ARN Nucleotidiltransferasas/genética , Empalme del ARN
19.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37084731

RESUMEN

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Asunto(s)
Proteómica , Factores de Transcripción , Humanos , Proteómica/métodos , Cisteína/metabolismo , Ligandos
20.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295433

RESUMEN

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Intrones/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN/genética , Empalmosomas/metabolismo , Transducción de Señal , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata Resistentes a la Castración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA