Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.794
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 207-228, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36696569

RESUMEN

The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Piel , Humanos , Animales , Epitelio , Regeneración/fisiología
2.
Annu Rev Immunol ; 39: 481-509, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33577347

RESUMEN

Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.


Asunto(s)
MicroARNs , Estabilidad del ARN , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Annu Rev Immunol ; 36: 221-246, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29328786

RESUMEN

Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/inmunología , Metabolismo Energético , Epigénesis Genética , Animales , Biomarcadores , Regulación del Desarrollo de la Expresión Génica , Humanos , Neoplasias/etiología , Neoplasias/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
4.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906095

RESUMEN

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Asunto(s)
Quimera , Organogénesis , Animales , Humanos , Quimera/embriología , Implantación del Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias , Modelos Biológicos , Organoides , Medicina Regenerativa , Ingeniería de Tejidos/métodos
5.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848678

RESUMEN

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Asunto(s)
Homeostasis , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneración , Células Madre , Animales , Células Madre/metabolismo , Células Madre/citología , Ratones , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citología , Diferenciación Celular , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Análisis de la Célula Individual , Masculino
6.
Cell ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39332412

RESUMEN

Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.

7.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320549

RESUMEN

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Asunto(s)
Escherichia coli , Biología Sintética , Diferenciación Celular , Escherichia coli/citología , Escherichia coli/genética , Integrasas/metabolismo , Biología Sintética/métodos , Aptitud Genética , Farmacorresistencia Bacteriana
8.
Cell ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39476839

RESUMEN

Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.

9.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280375

RESUMEN

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Asunto(s)
Intestinos , Hígado , Animales , Ratones , Proliferación Celular , Hígado/metabolismo , PPAR alfa/metabolismo , Proteómica , Células Madre/metabolismo , Vía de Señalización Wnt , Intestinos/citología , Intestinos/metabolismo
10.
Cell ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39471809

RESUMEN

Epithelial tumors are characterized by abundant inter- and intra-tumor heterogeneity, which complicates diagnostics and treatment. The contribution of cancer-stroma interactions to this heterogeneity is poorly understood. Here, we report a paradigm to quantify phenotypic diversity in head and neck squamous cell carcinoma (HNSCC) with single-cell resolution. By combining cell-state markers with morphological features, we identify phenotypic signatures that correlate with clinical features, including metastasis and recurrence. Integration of tumor and stromal signatures reveals that partial epithelial-mesenchymal transition (pEMT) renders disease outcome highly sensitive to stromal composition, generating a strong prognostic and predictive signature. Spatial transcriptomics and subsequent analyses of cancer spheroid dynamics identify the cancer-associated fibroblast-pEMT axis as a nexus for intercompartmental signaling that reprograms pEMT cells into an invasive phenotype. Taken together, we establish a paradigm to identify clinically relevant tumor phenotypes and discover a cell-state-dependent interplay between stromal and epithelial compartments that drives cancer aggression.

11.
Cell ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39413786

RESUMEN

Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.

12.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657601

RESUMEN

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Metiltransferasas , Ratones Endogámicos C57BL , Nicho de Células Madre , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciación Celular , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Humanos
13.
Cell ; 187(22): 6152-6164.e18, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39326417

RESUMEN

We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Madre Pluripotentes Inducidas , Trasplante de Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Hemoglobina Glucada/metabolismo , Masculino , Islotes Pancreáticos/metabolismo , Recto del Abdomen/metabolismo , Adulto , Glucemia/metabolismo , Insulina/metabolismo
14.
Cell ; 187(19): 5298-5315.e19, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168124

RESUMEN

During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.


Asunto(s)
Piel , Cicatrización de Heridas , Animales , Ratones , Piel/metabolismo , Receptores ErbB/metabolismo , Células Madre/metabolismo , Células Madre/citología , Linaje de la Célula , Regeneración , Ratones Endogámicos C57BL , Repitelización , Diferenciación Celular , Queratinocitos/metabolismo , Queratinocitos/citología
15.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579712

RESUMEN

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Células Madre , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Diferenciación Celular , Linaje de la Célula , Pulmón/citología , Pulmón/metabolismo , Pulmón/fisiología , Lesión Pulmonar/patología , Ratones Endogámicos C57BL , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Regeneración , Transducción de Señal , Células Madre/metabolismo , Células Madre/citología
16.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670072

RESUMEN

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Asunto(s)
Neuronas , Animales , Ratones , Ratas , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Blastocisto/metabolismo , Blastocisto/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Especificidad de la Especie , Ratones Endogámicos C57BL , Masculino
17.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838669

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Asunto(s)
Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Periodontitis , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Ratones , Hematopoyesis Clonal/genética , Humanos , Periodontitis/genética , Periodontitis/patología , Mutación , Masculino , Femenino , Inflamación/genética , Inflamación/patología , Osteoclastos/metabolismo , Ratones Endogámicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Hematopoyesis/genética , Osteogénesis/genética , Células Madre Hematopoyéticas/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Persona de Mediana Edad
18.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749423

RESUMEN

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Asunto(s)
Envejecimiento , Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Trombosis , Animales , Células Madre Hematopoyéticas/metabolismo , Plaquetas/metabolismo , Trombosis/patología , Trombosis/metabolismo , Ratones , Humanos , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Células Progenitoras de Megacariocitos/metabolismo , Masculino
19.
Cell ; 187(3): 642-658.e19, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218188

RESUMEN

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.


Asunto(s)
Neoplasias Hematológicas , Fosfoproteínas , Elongación de la Transcripción Genética , Factores de Transcripción , Humanos , Neoplasias Hematológicas/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Fosfoproteínas/genética
20.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428422

RESUMEN

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Asunto(s)
Inflamación , Interleucina-10 , Mielopoyesis , Animales , Ratones , Embarazo/inmunología , Feto , Hematopoyesis , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Interleucina-10/inmunología , Animales Recién Nacidos , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA