Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(3): 100509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791992

RESUMEN

Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.


Asunto(s)
Neuroblastoma , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Células HEK293 , Células 3T3 NIH , Neuroblastoma/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
2.
J Proteome Res ; 23(8): 3393-3403, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38967832

RESUMEN

Lysosomes constitute the main degradative compartment of most mammalian cells and are involved in various cellular functions. Most of them are catalyzed by lysosomal proteins, which typically are low abundant, complicating their analysis by mass spectrometry-based proteomics. To increase analytical performance and to enable profiling of lysosomal content, lysosomes are often enriched. Two approaches have gained popularity in recent years, namely, superparamagnetic iron oxide nanoparticles (SPIONs) and immunoprecipitation from cells overexpressing a 3xHA-tagged version of TMEM192 (TMEM-IP). The effect of these approaches on the lysosomal proteome has not been investigated to date. We addressed this topic through a combination of both techniques and proteomic analysis of lysosome-enriched fractions. For SPIONs treatment, we identified altered cellular iron homeostasis and moderate changes of the lysosomal proteome. For overexpression of TMEM192, we observed more pronounced effects in lysosomal protein expression, especially for lysosomal membrane proteins and those involved in protein trafficking. Furthermore, we established a combined strategy based on the sequential enrichment of lysosomes with SPIONs and TMEM-IP. This enabled increased purity of lysosome-enriched fractions and, through TMEM-IP-based lysosome enrichment from SPIONs flow-through and eluate fractions, additional insights into the properties of individual approaches. All data are available via ProteomeXchange with PXD048696.


Asunto(s)
Lisosomas , Proteómica , Lisosomas/metabolismo , Proteómica/métodos , Humanos , Inmunoprecipitación , Nanopartículas Magnéticas de Óxido de Hierro/química , Hierro/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Células HEK293 , Proteínas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39316204

RESUMEN

BACKGROUND: Patients with ductal carcinoma in situ (DCIS) and patients undergoing risk reduction mastectomy may undergo sentinel lymph node biopsy (SLNB) at the time of mastectomy to complete axillary staging were an underlying invasive malignancy to be found on final pathology. Among patients with DCIS undergoing mastectomy, 15-29% of patients will have invasive disease on final pathology; therefore, approximately 70-85% of patients may benefit from avoiding SLNB. Superparamagnetic tracers (SPMT) have been proven to be non-inferior to the standard radioisotope and blue dye combination. SPMT remains active for several weeks, allowing a large proportion of DCIS and genetic carrier patients to potentially avoid SLNB in the setting of mastectomy. We hypothesize the use of SPMT will reduce the number of SLNB performed in patients undergoing mastectomy for DCIS and risk reduction, ultimately reducing the number of complications associated with axillary surgery. We seek to report our community cancer center's experience with SPMT and omission of SLNB in the DCIS and prophylactic mastectomy patient population. METHODS: We performed a retrospective review of 52 female patients with DCIS or known genetic predisposition undergoing mastectomy. SPMT (Magtrace®, Endomag Ltd, Cambridge, UK) was injected ipsilateral to DCIS and bilaterally for prophylactic mastectomy patients. Our primary outcome was rate of return to the operating room (OR) for delayed SLNB. Secondary outcomes included post-operative complications within 30 days of surgery and operative time. We compared outcomes to a control group of 28 women undergoing mastectomy for DCIS or for risk reduction who underwent SLNB at their index operation in traditional fashion. Continuous variables were reported using median and interquartile ranges (IQR) and were compared using the Mann-Whitney U test. Categorical data were reported using frequency and percent and were compared using Pearson's Chi-Square or Fisher's Exact test, as appropriate. Alpha was set to 0.05 to determine statistical significance. RESULTS: There was a total of 80 patients (52 SPMT, 28 control). Median age of SPMT patients was 49.5 (IQR 40-60.75) vs. 54.5 (48 - 65) in the traditional tracer group. vs. control group. 57.7% of SPMT patients underwent mastectomy for DCIS vs. 89.3% in the control group. Eight SPMT patients (15.4%) had invasive ductal carcinoma (IDC) on final pathology and seven of those patients underwent delayed SLNB (87.5%). None of the delayed SLNB were positive for metastatic disease. Rates of post-operative complications were similar between the two groups, including hematoma, seroma, and surgical site infection. OR times were also similar with median OR time 202 min (min) for the SPMT group vs. 195 min for the control group. CONCLUSION: Use of SPMT avoided SLNB in 84.6% of our patients. We found no difference in rates of post-operative complications or operative times in patients using SPMT for omission of SLNB at time of mastectomy compared to the control group. Our findings suggest SLNB can be avoided in a majority of patients undergoing mastectomy for DCIS or risk reduction in the setting of genetic predisposition.

4.
Breast Cancer Res Treat ; 204(1): 117-121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087058

RESUMEN

PURPOSE: Unnecessary axillary surgery can potentially be avoided in patients with DCIS undergoing mastectomy. Current guidelines recommend upfront sentinel lymph node biopsy during the index operation due to the potential of upstaging to invasive cancer. This study reviews a single institution's experience with de-escalating axillary surgery using superparamagnetic iron oxide dye for axillary mapping in patients undergoing mastectomy for DCIS. METHODS: This is a retrospective single-institution cross-sectional study. All medical records of patients who underwent mastectomy for a diagnosis of DCIS from August 2021 to January 2023 were reviewed and patients who had SPIO injected at the time of the index mastectomy were included in the study. Descriptive statistics of demographics, clinical information, pathology results, and interval sentinel lymph node biopsy were performed. RESULTS: A total of 41 participants underwent 45 mastectomies for DCIS. The median age of the participants was 58 years (IQR = 17; range 25 to 76 years), and the majority of participants were female (97.8%). The most common indication for mastectomy was diffuse extent of disease (31.7%). On final pathology, 75.6% (34/45) of mastectomy specimens had DCIS without any type of invasion and 15.6% (7/45) had invasive cancer. Of the 7 cases with upgrade to invasive disease, 2 (28.6%) of them underwent interval sentinel lymph node biopsy. All sentinel lymph nodes biopsied were negative for cancer. CONCLUSION: The use of superparamagnetic iron oxide dye can prevent unnecessary axillary surgery in patients with DCIS undergoing mastectomy.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Compuestos Férricos , Humanos , Femenino , Masculino , Adolescente , Mastectomía , Carcinoma Intraductal no Infiltrante/diagnóstico , Carcinoma Intraductal no Infiltrante/cirugía , Carcinoma Intraductal no Infiltrante/patología , Estudios Retrospectivos , Estudios Transversales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Biopsia del Ganglio Linfático Centinela/métodos , Axila/cirugía , Axila/patología , Nanopartículas Magnéticas de Óxido de Hierro , Ganglios Linfáticos/patología
5.
Small ; 20(5): e2305300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37735143

RESUMEN

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Ratones , Animales , Anisotropía , Diagnóstico por Imagen/métodos , Magnetismo , Fenómenos Magnéticos , Imagen por Resonancia Magnética
6.
Small ; : e2406631, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205548

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention due to their promising applications in biomedicine, chemical catalysis, and magnetic memory devices. In this work, the force is measured between a single SPION coated with chiral molecules and a ferromagnetic substrate by atomic force microscopy (AFM), with the substrate magnetized either toward or away from the approaching AFM tip. The force between the coated SPION and the magnetic substrate depends on the handedness of the molecules adsorbed on the SPION and on the direction of the magnetization of the substrate. By inserting nm-scale spacing layers between the coated SPION and the magnetic substrate it is shown that the SPION has a short-range magnetic monopole-like magnetic field. A theoretical framework for the nature of this field is provided.

7.
Small ; : e2402940, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004867

RESUMEN

Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.

8.
Small ; 20(10): e2305467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875633

RESUMEN

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

9.
Small ; 20(10): e2305675, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888794

RESUMEN

Controlled actuation of superparamagnetic beads (SPBs) within a microfluidic environment using tailored dynamic magnetic field landscapes (MFLs) is a potent approach for the realization of point-of-care diagnostics within Lab-on-a-chip (LOC) systems. Making use of an engineered magnetic domain pattern as the MFL source, a functional LOC-element with combined magnetophoretic "funnel", concentrator, and "valve" functions for micron-sized SPBs is presented. A parallel-stripe domain pattern design with periodically decreasing/increasing stripe lengths is fabricated in a topographically flat continuous exchange biased (EB) thin film system by ion bombardment induced magnetic patterning (IBMP). It is demonstrated that, upon application of external magnetic field pulses, a fully reversible concentration of SPBs at the domain pattern's focal point occurs. In addition, it is shown that this functionality may be used as an SPB "funnel", allowing only a maximum number of particles to pass through the focal point. Adjusting the pulse time length, the focal point can be clogged up for incoming SPBs, resembling an on/off switchable particle "valve". The observations are supported by quantitative theoretical force considerations.

10.
Histochem Cell Biol ; 161(6): 507-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597938

RESUMEN

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.


Asunto(s)
Endocitosis , Lisosomas , Neuronas Motoras , Dióxido de Silicio , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Lisosomas/metabolismo , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Células HeLa , Células Cultivadas , Nanopartículas de Magnetita/química , Animales , Nanopartículas Magnéticas de Óxido de Hierro/química
11.
Cytotherapy ; 26(3): 276-285, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38231166

RESUMEN

BACKGROUND AIMS: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Células Madre Mesenquimatosas , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología , Ganglios Linfáticos , Ratones Endogámicos C57BL
12.
J Magn Reson Imaging ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228293

RESUMEN

BACKGROUND: Intravenous Ferumoxtran-10 belongs to ultra-small superparamagnetic iron oxide particles and can be used for magnetic resonance neurography (MRN) as an alternative to other imaging methods which use contrast agents. PURPOSE: To examine the impact of intravenous Ferumoxtran-10 on vascular suppression and compare image quality to gadolinium (Gd)-enhanced image acquisition in MRN of lumbosacral plexus (LS). STUDY TYPE: Prospective. POPULATION/SUBJECTS: 17 patients with Ferumoxtran-10-enhanced MRN, and 20 patients with Gd-enhanced MRN. FIELDSTRENGTH/SEQUENCE: 3T/3D STIR sequence. ASSESSMENT: Image quality, nerve visibility and vascular suppression were evaluated by 3 readers using a 5-point Likert scale. STATISTICAL TESTS: Inter-reader agreement (IRA) was calculated using intraclass coefficients (ICC). Quantitative analysis of image quality was performed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements and compared using Student's t-testing. RESULTS: Image quality, nerve visibility and vascular suppression were significantly higher for Ferumoxtran-10-enhanced MRN compared to Gd-enhanced MRN sequences (p < 0.05). IRA for image quality of nerves was good in Gd-enhanced and Ferumoxtran-10 MRN with ICC values of 0.76 and 0.89, respectively. IRA for nerve visibility was good in Gd- and Ferumoxtran-10 enhanced MR neurography (ICC 0.72 and 0.90). Mean SNR was significantly higher in Ferumoxtran-10-enhanced MRN for all analyzed structures, while mean CNR was for significantly better for S1 ganglion and femoral nerve in Ferumoxtran-10-enhanced MRN (p < 0.05). DATA CONCLUSION: Ferumoxtran-10-enhanced MRN of the LS plexus showed significantly higher image quality and nerve visibility with better vascular suppression as compared to Gd-enhanced MRN. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

13.
J Magn Reson Imaging ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587279

RESUMEN

BACKGROUND: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE: Prospective. SUBJECTS: Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE: 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT: The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS: Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS: 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION: Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

14.
Biomed Microdevices ; 26(1): 16, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324228

RESUMEN

Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.


Asunto(s)
Compuestos Férricos , MicroARNs , Neoplasias , Humanos , Distribución Tisular , Nanopartículas Magnéticas de Óxido de Hierro
15.
Gynecol Oncol ; 187: 145-150, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38776632

RESUMEN

OBJECTIVES: Sentinel lymph node (SLN) detection with superparamagnetic iron oxide (SPIO) nanoparticles has been widely studied and standardized for breast and prostate cancer, but there is scarce evidence concerning its use in vulvar cancer. The objective of this study was to compare SLN detection using a SPIO tracer injected at the time of the surgery detected by a magnetometer, with the standard procedure of using a technetium 99 radioisotope (Tc99) detected by a gamma probe, in patients with vulvar cancer. METHODS: The SPIO vulvar cancer study was a single-center prospective interventional non-inferiority study of SPIO compared to Tc99, conducted between 2016 and 2021 in patients who met the GROINSS-V study inclusion criteria for selective sentinel lymph node dissection in vulvar cancer. RESULTS: We included 18 patients and a total of 41 SLNs. The level of agreement between tracers was 92.7% (80.6%-97.4%), corresponding to 38 out of 41 SLNs, which confirms the non-inferiority of SPIO compared to Tc99. The SLN detection rate per groin was 96.3 (81.7%-99.3) using Tc99 and 100% (87.5%-100%) using SPIO. Both tracers had a detection rate of 100% for positive lymph nodes. CONCLUSIONS: The use of SPIO as a tracer for detecting SLNs in patients with vulvar cancer has shown to be non-inferior to that of the standard radiotracer, with the advantages of not requiring nuclear medicine and being able to inject it at the time of surgery after induction of anesthesia.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Ganglio Linfático Centinela , Neoplasias de la Vulva , Humanos , Femenino , Neoplasias de la Vulva/patología , Neoplasias de la Vulva/diagnóstico por imagen , Neoplasias de la Vulva/cirugía , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/diagnóstico por imagen , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Biopsia del Ganglio Linfático Centinela/métodos , Tecnecio/administración & dosificación , Anciano de 80 o más Años , Radiofármacos/administración & dosificación , Metástasis Linfática/diagnóstico por imagen
16.
Nanotechnology ; 35(48)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39146961

RESUMEN

This work demonstrates the synthesis and characterization of Fe nanoparticles surrounded by a citrate (CIT) matrix prepared at various temperatures and concentrations of metal, capping agent and reducing agent at standard conditions. We study the effect of reactant ratio and reaction temperature on the magnetization of the produced nanoparticles and their crystal structure. We found that for optimal metal concentrations, magnetic saturation increases with increase in the concentration of capping and reducing agents but decreases as the temperature of the reaction increases. Synthesis conditions were tailored to reveal nucleation of particles with average sizes ranging from 24 to 105 nm and a spherical shape. The ultra-high saturation magnetization of 228 emu g-1obtained for samples prepared at a metal precursor concentration of 27.8 mol l-1was attributed to the formation of small magnetic domains. Energy band gap measurements revealed a band gap energy for the Fe nanoparticles in the CIT matrix which is associated with CIT concentration and/or possible formation of a few thin layers of iron oxide shell and does not have a significant effect on the magnetic properties of the samples. Herein, we demonstrate that the synthesis parameters are crucial for the nucleation of Fe-CIT nanoparticles tailoring their magnetizatic properties as well as their potential for different applications.

17.
Nanotechnology ; 35(16)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211331

RESUMEN

The effects of pH, MNP concentration, and medium viscosity on the magnetic fluid hyperthermia (MFH) properties of chitosan-coated superparamagnetic Fe3O4nanoparticles (MNPs) are probed here. Due to the protonation of the amide groups, the MNPs are colloidally stable at lower pH (∼2), but form aggregates at higher pH (∼8). The increased aggregate size at higher pH causes the Brownian relaxation time (τB) to increase, leading to a decrease in specific absorption rate (SAR). For colloidal conditions ensuring Brownian-dominated relaxation dynamics, an increase in MNP concentrations or medium viscosity is found to increase theτB. SAR decreases with increasing MNP concentration, whereas it exhibits a non-monotonic variation with increasing medium viscosity. Dynamic hysteresis loop-based calculations are found to be in agreement with the experimental results. The findings provide a greater understanding of the variation of SAR with the colloidal properties and show the importance of relaxation dynamics on MFH efficiency, where variations in the frequency-relaxation time product across the relaxation plateau cause significant variations in SAR. Further, thein vitrocytotoxicity studies show good bio-compatibility of the chitosan-coated Fe3O4MNPs. Higher SAR at acidic pH for bio-medically acceptable field parameters makes the bio-compatible chitosan-coated Fe3O4MNPs suitable for MFH applications.

18.
Nanotechnology ; 35(21)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38387086

RESUMEN

As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Corona de Proteínas , Humanos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Medicina de Precisión , Neoplasias/diagnóstico , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Hierro
19.
Int J Med Sci ; 21(11): 2233-2243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239546

RESUMEN

Purpose: Cognitive dysfunction caused by chronic cerebral hypoperfusion (CCH) is the leading cause of vascular dementia. Therefore, it is necessary to explore the mechanism that causes cerebral injury and find an effective therapy. Methods: Bone marrow mononuclear cells (BMMNCs) were extracted to detect the activity by CCK-8 kit and verify the transfection efficiency using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). A CCH rat model was established. Superparamagnetic iron oxide nanoparticles (BMPs)-PEI-Slit2/BMMNCs were injected into the tail vein and intervened with an external magnetic field. Hematoxylin and eosin staining was used to observe the pathological changes in brain tissue. The Slit/Robo pathway-related proteins Slit2 and Robo4 were detected by RT-qPCR and Western blotting. Results: The neurological score of the CCH group significantly increased compared with that of the sham group (P<0.05). The levels of brain injury markers S-100ß and NSE were significantly higher in the CCH group than in the sham group (P<0.05). Neuronal apoptosis in the frontal cortex and hippocampus of CCH rats significantly increased compared with that of the sham group (P<0.05). The expression levels of Slit2 and Robo4 mRNAs and proteins in brain tissue of CCH rats significantly increased (P<0.05). The neurological function scores of CCH rats treated with BMP-PEI-Slit2/BMMNC significantly increased after Robo4 siRNA administration (P<0.05). Conclusion: BMP combination with the CCH-related gene Slit2 can effectively improve the efficiency of BMMNC transplantation in treatment.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Animales , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Disfunción Cognitiva/terapia , Disfunción Cognitiva/etiología , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Humanos , Masculino , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Células de la Médula Ósea , Apoptosis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Terapia Genética/métodos , Proteínas Roundabout
20.
Acta Radiol ; 65(1): 99-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36760069

RESUMEN

BACKGROUND: Endothelial TGF-ß1 signaling is a primary driver of atherosclerosis-associated vascular inflammation. Targeted imaging and inhibition of the expression of TGF-ß1 may reduce the atherosclerotic vessel wall inflammation and stop the progression of atherosclerotic plaque. PURPOSE: To investigate the possibility of the anti-TGF-ß1-ultrasmall superparamagnetic iron oxide (USPIO) specific probe as an imaging marker for the expression of TGF-ß1 in ApoE-/- mice atherosclerosis detected with 7.0-T magnetic resonance imaging (MRI). MATERIAL AND METHODS: Here, 70 ApoE-/- mice on a high-fat diet served as the experimental group and 30 C57BL/6 mice on a normal diet served as the control group. The morphology of plaques was viewed by H&E staining, and the expression and distribution of TNC and TGF-ß1 were detected by immunohistochemical staining. Another 40 mice in the experimental group were classified into a targeted group, which was administrated an anti-TGF-ß1-USPIO probe, and the pure group, which was injected with pure USPIO. RESULTS: The 7.0-T MRI showed that the relative signal intensity (rSI) changes of the targeted group decreased more than those of the pure group (-19.34 ± 0.68% vs. -5.61 ± 0.57%; P < 0.05). Histopathological analyses demonstrated expression of TGF-ß1 in atherosclerotic plaque formation progression from 10 to 28 weeks. The MR images of the expression of TGF-ß1 in atherosclerosis correlated well with the pathological progression of atherosclerotic plaque formation. CONCLUSIONS: Anti-TGF-ß1-USPIO could provide a useful molecular imaging tool for detecting and monitoring the expression of TGF-ß1 in atherosclerotic plaques by MRI.


Asunto(s)
Aterosclerosis , Nanopartículas de Magnetita , Placa Aterosclerótica , Animales , Ratones , Placa Aterosclerótica/diagnóstico por imagen , Factor de Crecimiento Transformador beta1 , Medios de Contraste , Ratones Endogámicos C57BL , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen por Resonancia Magnética/métodos , Inflamación , Dextranos , Apolipoproteínas E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA