Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.277
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cell Mol Med ; 28(2): e18061, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018900

RESUMEN

Treatments for organ-confined prostate cancer include external beam radiation therapy, radical prostatectomy, radiotherapy/brachytherapy, cryoablation and high-intensity focused ultrasound. None of these are cancer-specific and are commonly accompanied by side effects, including urinary incontinence and erectile dysfunction. Moreover, subsequent surgical treatments following biochemical recurrence after these interventions are either limited or affected by the scarring present in the surrounding tissue. Carnosine (ß-alanyl-L-histidine) is a histidine-containing naturally occurring dipeptide which has been shown to have an anti-tumorigenic role without any detrimental effect on healthy cells; however, its effect on prostate cancer cells has never been investigated. In this study, we investigated the effect of carnosine on cell proliferation and metabolism in both a primary cultured androgen-resistant human prostate cancer cell line, PC346Flu1 and murine TRAMP-C1 cells. Our results show that carnosine has a significant dose-dependent inhibitory effect in vitro on the proliferation of both human (PC346Flu1) and murine (TRAMP-C1) prostate cancer cells, which was confirmed in 3D-models of the same cells. Carnosine was also shown to decrease adenosine triphosphate content and reactive species which might have been caused in part by the increase in SIRT3 also shown after carnosine treatment. These encouraging results support the need for further human in vivo work to determine the potential use of carnosine, either alone or, most likely, as an adjunct therapy to surgical or other conventional treatments.


Asunto(s)
Braquiterapia , Carnosina , Disfunción Eréctil , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Carnosina/farmacología , Carnosina/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/cirugía , Dipéptidos , Braquiterapia/efectos adversos , Disfunción Eréctil/etiología
2.
Small ; 20(25): e2307281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225701

RESUMEN

Osteoarthritis (OA) is a typical joint degenerative disease that is prevalent worldwide and significantly affects the normal activities of patients. Traditional treatments using diclofenac (DCF) as an anti-inflammatory drug by oral administration and transdermal delivery have many inherent deficiencies. In this study, a lubricating microneedles (MNs) system for the treatment of osteoarthritis with multistage sustained drug delivery and great reduction in skin damage during MNs penetration is developed. The bilayer dissolvable MNs system, namely HA-DCF@PDMPC, is prepared by designating the composite material of hyaluronic acid (HA) and covalently conjugated drug compound (HA-DCF) as the MNs tips and then modifying the surface of MNs tips with a self-adhesive lubricating copolymer (PDMPC). The MNs system is designed to achieve sustained drug release of DCF via ester bond hydrolysis, physical diffusion from MNs tips, and breakthrough of lubrication coating. Additionally, skin damage is reduced due to the presence of the lubrication coating on the superficial surface. Therefore, the lubricating MNs with multistage sustained drug delivery show good compliance as a transdermal patch for OA treatment, which is validated from anti-inflammatory cell tests and therapeutic animal experiments, down-regulating the expression levels of pro-inflammatory factors and alleviating articular cartilage destruction.


Asunto(s)
Diclofenaco , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Agujas , Osteoartritis , Osteoartritis/tratamiento farmacológico , Animales , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Diclofenaco/farmacología , Ácido Hialurónico/química , Lubrificación , Humanos , Preparaciones de Acción Retardada/química
3.
Small ; : e2304850, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686680

RESUMEN

Silver has long been recognized for its potent antimicrobial properties, but achieving a slow and longer-term delivery of silver ions presents significant challenges. Previous efforts to control silver ion dosages have struggled to sustain release for extended periods in biomimetic environments, especially in the presence of complex proteins. This challenge is underscored by the absence of technology for sustaining antimicrobial activity, especially in the context of orthopedic implants where long-term efficacy, extending beyond 7 days, is essential. In this study, the tunable, slow, and longer-term release of silver ions from the two-dimensional (2D) nanocapillaries of graphene oxide (GO) laminates incorporated with silver ions (Ag-GO) for antimicrobial applications are successfully demonstrated. To closely mimic a physiologically relevant serum-based environment, a novel in vitro study model using 100% fetal bovine serum (FBS) is introduced as the test medium for microbiology, biocompatibility, and bioactivity studies. To emulate fluid circulation in a physiological environment, the in vitro studies are challenged with serum exchange protocols on different days. The findings show that the Ag-GO coating can sustainably release silver ions at a minimum dosage of 10 µg cm-2 day-1, providing an effective and sustained antimicrobial barrier for over ten days.

4.
Small ; 20(16): e2307523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018331

RESUMEN

Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.


Asunto(s)
Separación de Fases , Piel , Humanos , Preparaciones de Acción Retardada/farmacología , Administración Cutánea , Porosidad , Sistemas de Liberación de Medicamentos/métodos , Agujas
5.
Small ; 20(30): e2306877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415820

RESUMEN

Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.


Asunto(s)
Carbonato de Calcio , Cápsulas , Polielectrolitos , Carbonato de Calcio/química , Cápsulas/química , Polielectrolitos/química , Precipitación Química , Electrólitos/química
6.
Chemistry ; 30(1): e202301630, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581254

RESUMEN

Controlled delivery of target molecules is required in many medical and chemical applications. For such purposes, metal-organic frameworks (MOFs), which possess desirable features such as high porosity, large surface area, and adjustable functionalities, hold great potential as drug carriers. Herein, Quercetin (QU), as an anticancer drug, was loaded on Cu2 (BDC)2 (DABCO) and Cu2 (F4 BDC)2 )DABCO) MOFs (BDC=1,4-benzenedicarboxylate and DABCO=1,4-diazabicyclo[2.2.2]octane). As these Cu-MOFs have a high surface area, an appropriate pore size, and biocompatible ingredients, they can be utilized to deliver QU. The loading efficiency of QU in these MOFs was 49.5 % and 41.3 %, respectively. The drug-loaded compounds displayed sustained drug release over 15 days, remarkably high drug loading capacities and pH-controlled release behavior. The prepared nanostructures were characterized by different characterization technics including FT-IR, PXRD, ZP, TEM, FE-SEM, UV-vis, and BET. In addition, MTT assays were carried out on the HEK-293 and HeLa cell lines to investigate cytotoxicity. Cellular apoptosis analysis was performed to investigate the cell death mechanisms. Grand Canonical Monte Carlo simulations were conducted to analyze the interactions between MOFs and QU. Moreover, the stability of MOFs was also investigated during and after the drug release process. Ultimately, kinetic models of drug release were evaluated.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/química , Quercetina , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Células HEK293 , Portadores de Fármacos/toxicidad , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno
7.
Mol Pharm ; 21(1): 87-101, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100656

RESUMEN

Osteoarthritis (OA) affects numerous patients worldwide, and there are no approved disease-modifying drugs. Repurposing FDA-approved small molecular drugs could be a promising alternative strategy to treat OA. Disulfiram (DSF), a clinically approved drug for treatment of alcoholism, inhibits inflammasome activation and exhibits a protective role in interleukin-1ß-induced cardiac injury. However, its efficacy in treating OA remains to be explored due to its poor water solubility and stability, which limit its use in OA treatment. Here, the anti-inflammatory effect of DSF is evaluated in vitro, and a double-layer encapsulation approach is developed for intra-articular delivery of DSF for OA treatment in vivo. DSF is loaded into poly(lactic-co-glycolic acid)-based nanoparticles and encapsulated in gelatin methacrylate microgels through a microfluidic device. Results show that DSF effectively inhibits the expression of key inflammatory cytokines in OA chondrocytes, and the double-layer encapsulation approach reduces the burst release of DSF and prolongs its retention time in the in vitro study. Sustained release of DSF from microgels mitigates cartilage inflammation and subchondral bone erosion in a monoiodoacetate-induced rat OA model. This work demonstrates the potential of repurposing FDA-approved drugs for OA treatment and provides a promising platform for intra-articular delivery of small molecules for superior therapeutic effect.


Asunto(s)
Cartílago Articular , Microgeles , Nanopartículas , Osteoartritis , Humanos , Ratas , Animales , Disulfiram/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Citocinas , Cartílago Articular/metabolismo
8.
Pharm Res ; 41(3): 531-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366235

RESUMEN

PURPOSE: Traditional eye drops exhibit a modest bioavailability ranging from 1 to 5%, necessitating recurrent application. Thus, a contact lens-based drug delivery system presents substantial benefits. Nonetheless, pharmaceutical agents exhibiting poor solubility may compromise the quintessential characteristics of contact lenses and are, consequently, deemed unsuitable for incorporation. To address this issue, the present study has engineered a novel composite drug delivery system that amalgamates micellar technology with contact lenses, designed specifically for the efficacious conveyance of timolol and brinzolamide. METHODS: Utilizing mPEG-PCL as the micellar material, this study crafted mPEG-PCL micelles loaded with brinzolamide and timolol through the film hydration technique. The micelle-loaded contact lens was fabricated employing the casting method; a uniform mixture of HEMA and EGDMA with the mPEG-PCL micelles enshrouding brinzolamide and timolol was synthesized. Following the addition of a photoinitiator, 50 µL of the concoction was deposited into a contact lens mold. Subsequently, the assembly was subjected to polymerization under 365 nm ultraviolet light for 35 min, resulting in the formation of the micelle-loaded contact lenses. RESULTS: In the present article, we delineate the construction of a micelle-loaded contact lens designed for the administration of brinzolamide and timolol in the treatment of glaucoma. The study characterizes crucial properties of the micelle-loaded contact lenses, such as transmittance and ionic permeability. It was observed that these vital attributes meet the standard requirements for contact lenses. In vitro release studies revealed that timolol and brinzolamide could be gradually liberated over periods of up to 72 and 84 h, respectively. In vivo pharmacodynamic evaluation showed a significant reduction in intraocular pressure and a relative bioavailability of 10.84 times that of commercially available eye drops. In vivo pharmacokinetic evaluation, MRT was significantly increased, and the bioavailability of timolol and brinzolamide was 2.71 and 1.41 times that of eye drops, respectively. Safety assessments, including in vivo irritation, histopathological sections, and protein adsorption studies, were conducted as per established protocols, confirming that the experiments were in compliance with safety standards. IN CONCLUSION: The manuscript delineates the development of a safe and efficacious micelle-loaded contact lens drug delivery system, which presents a novel therapeutic alternative for the management of glaucoma.


Asunto(s)
Lentes de Contacto , Glaucoma , Poliésteres , Polietilenglicoles , Sulfonamidas , Tiazinas , Humanos , Timolol/farmacocinética , Timolol/uso terapéutico , Micelas , Antihipertensivos/farmacocinética , Glaucoma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Soluciones Oftálmicas/uso terapéutico
9.
Pharm Res ; 41(6): 1271-1284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839720

RESUMEN

PURPOSE: Traditional progesterone (PRG) injections require long-term administration, leading to poor patient compliance. The emergence of long-acting injectable microspheres extends the release period to several days or even months. However, these microspheres often face challenges such as burst release and incomplete drug release. This study aims to regulate drug release by altering the crystallinity of the drug during the release process from the microspheres. METHODS: This research incorporates methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) into poly(lactide-co-glycolide) (PLGA) microspheres to enhance their hydrophilicity, thus regulating the release rate and drug morphology during release. This modification aims to address the issues of burst and incomplete release in traditional PLGA microspheres. PRG was used as the model drug. PRG/mPEG-PLGA/PLGA microspheres (PmPPMs) were prepared via an emulsification-solvent evaporation method. Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were employed to investigate the presence of PRG in PmPPMs and its physical state changes during release. RESULTS: The addition of mPEG-PLGA altered the crystallinity of the drug within the microspheres at different release stages. The crystallinity correlated positively with the amount of mPEG-PLGA incorporated; the greater the amount, the faster the drug release from the formulation. The bioavailability and muscular irritation of the long-acting injectable were assessed through pharmacokinetic and muscle irritation studies in Sprague-Dawley (SD) rats. The results indicated that PmPPMs containing mPEG-PLGA achieved low burst release and sustained release over 7 days, with minimal irritation and self-healing within this period. PmPPMs with 5% mPEG-PLGA showed a relative bioavailability (Frel) of 146.88%. IN CONCLUSION: In summary, adding an appropriate amount of mPEG to PLGA microspheres can alter the drug release process and enhance bioavailability.


Asunto(s)
Liberación de Fármacos , Microesferas , Polietilenglicoles , Ratas Sprague-Dawley , Polietilenglicoles/química , Animales , Progesterona/química , Progesterona/administración & dosificación , Progesterona/farmacocinética , Preparaciones de Acción Retardada/química , Ratas , Cristalización , Portadores de Fármacos/química , Tamaño de la Partícula , Poliésteres/química , Femenino , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Disponibilidad Biológica
10.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744732

RESUMEN

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Asunto(s)
Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Ibuprofeno , Polímeros , Preparaciones de Acción Retardada/química , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Polímeros/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo/química , Pirrolidinas/química , Química Farmacéutica/métodos , Povidona/química
11.
J Nanobiotechnology ; 22(1): 51, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321547

RESUMEN

BACKGROUND: Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS: Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION: This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.


Asunto(s)
Rinitis Alérgica , Células TH1 , Humanos , Ratas , Animales , Ratones , Preparaciones de Acción Retardada/farmacología , Células Th2 , Rinitis Alérgica/tratamiento farmacológico , Citocinas , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Ovalbúmina , Ratones Endogámicos BALB C
12.
Handb Exp Pharmacol ; 284: 133-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37059910

RESUMEN

Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tecnología , Tamaño de la Partícula , Preparaciones de Acción Retardada
13.
Chem Pharm Bull (Tokyo) ; 72(4): 381-384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616116

RESUMEN

Bietti's crystalline dystrophy (BCD) is an autosomal recessive chorioretinal degeneration caused by mutations in the CYP4V2 gene. It is characterized by cholesterol accumulation and crystal-like deposits in the retinas. Hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) exerts therapeutic effects against BCD by reducing lysosomal dysfunction and inhibiting cytotoxicity in induced pluripotent stem cell (iPSC)-RPE cells established from patient-derived iPS cells. However, the ocular retention of HP-ß-CyD is low and needs to be improved. Therefore, this study used a viscous agent to develop a sustained-release ophthalmic formulation containing HP-ß-CyD. Our results suggest that HP-ß-CyD-containing xanthan gum has a considerably higher sustained release capacity than other viscous agents, such as methylcellulose and sodium alginate. In addition, the HP-ß-CyD-containing xanthan gum exhibited pseudoplastic behavior. It was less cytotoxic to human retinal pigment epithelial cells compared with HP-ß-CyD alone. Furthermore, the slow release of HP-ß-CyD from xanthan gum caused a sustained decrease in free intracellular cholesterol. These results suggest that xanthan gum is a useful substrate for the sustained release formulation of HP-ß-CyD, and that HP-ß-CyD-containing xanthan gum has potential as an eye drop for BCD treatment.


Asunto(s)
Colesterol , Distrofias Hereditarias de la Córnea , Polisacáridos Bacterianos , Enfermedades de la Retina , Humanos , Preparaciones de Acción Retardada/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/farmacología
14.
J Liposome Res ; 34(1): 77-87, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37287348

RESUMEN

Over the last few years, among controlled-release delivery systems, multivesicular liposomes (MVLs) have attracted attention due to their unique benefits as a loco-regional drug delivery system. Considering the clinical limitations of the current treatment strategies for osteomyelitis, MVLs can be a suitable carrier for the local delivery of effective antibiotics. This study aimed to prepare vancomycin hydrochloride (VAN HL) loaded MVLs using the active loading method which to the best of our knowledge has not been previously reported. Empty MVLS were prepared by the double emulsion (w/o/w) method and VAN HL was loaded into the prepared liposomes by the ammonium gradient method. After full characterization, the release profile of VAN HL from MVLs was assessed at two different pH values (5.5 and 7.4), and compared with the release profile of the free drug and also passively loaded MVLs. In vitro antimicrobial activities were evaluated using the disc diffusion method. Our results demonstrated that the encapsulation efficiency was higher than 90% in the optimum actively loaded MVL. The free VAN HL was released within 6-8 h, while the passively loaded MVLs and the optimum actively loaded MVL formulation released the drug in 6 days and up to 19 days, respectively. The released drug showed effective antibacterial activity against osteomyelitis-causing pathogens. In conclusion, the prepared formulation offered the advantages of sustained-release properties, appropriate particle size as well as being composed of biocompatible materials, and thus could be a promising candidate for the loco-regional delivery of VAN HL and the management of osteomyelitis.


Asunto(s)
Liposomas , Osteomielitis , Humanos , Liposomas/química , Vancomicina/farmacología , Liberación de Fármacos , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Antibacterianos/farmacología , Tamaño de la Partícula
15.
Drug Dev Ind Pharm ; 50(4): 363-375, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38482839

RESUMEN

OBJECTIVE: The purpose of the present study was to formulate a menantine hydrochloride (MH) sustained-release suspension. METHODS: Menantine hydrochloride drug resin complex (MH-DRC) was prepared with strong acid cation exchange resin as carrier using water bath method. The MH-DRC was characterized using scanning electron microscopy, X-ray diffraction and infrared spectroscopy. The MH-coated microcapsule (MH-CM) with optimized formulation was further dispersed in a suitable medium to obtain a sustained-release suspension. The rats were given both the MH sustained-release suspension and the commercial MH sustained-release capsule by intragastric administration. The plasma concentration-time curves and related pharmacokinetic parameters were also investigated using a non-atrioventricular model. RESULTS: MH and ion-exchange resin were ionically bonded. AmberliteIRP®69 had a higher affinity for MH at the initial concentration of 5 mg·mL-1 and a reaction temperature of 25.0 ± 0.5 °C. In vitro drug release profile showed that both the drug resin complex and the coated microcapsules had a certain level of sustained-release effect. The t1/2 of MH sustained-release suspension was extended from 68.44 h to 72.79 h with the peak blood concentration being decreased to 3.56 µg·mL-1 and the Tmax extended to 12 h compared with the commercial MH sustained-release capsule. The concentration-time curve of the self-made MH sustained-release suspension was flattened and the average relative bioavailability (Fr) was 116.65% compared with the commercial MH sustained-release capsules. CONCLUSIONS: The findings showed that the MH sustained-release suspension was successfully formulated with acceptable pharmacokinetic indices for effective treatment of Alzheimer's disease.


Asunto(s)
Resinas de Intercambio Iónico , Ratas , Animales , Preparaciones de Acción Retardada , Cápsulas , Administración Oral , Liberación de Fármacos , Disponibilidad Biológica
16.
Nano Lett ; 23(24): 11809-11817, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38048290

RESUMEN

Insect sex pheromones as an alternative to chemical pesticides hold promising prospects in pest control. However, their burst release and duration need to be optimized. Herein, pheromone-loaded core-shell fibers composed of degradable polycaprolactone and polyhydroxybutyrate were prepared by coaxial electrospinning. The results showed that this core-shell fiber had good hydrophobic performance and thermal stability, and the light transmittance in the ultraviolet band was only below 40%, which provided protection to pheromones. The core-shell structure alleviated the burst release of pheromone in the fiber and extended the release time to about 133 days. In the field, the pheromone-loaded core-shell fibers showed the same continuous and efficient trapping of Spodoptera litura as the commercial carriers. More importantly, the electrospun fibers combined with biomaterials had a degradability unmatched by commercial carriers. The structure design strategy provides ideas for the innovative design of pheromone carriers and is a potential tool for the management of agricultural pests.


Asunto(s)
Materiales Biocompatibles , Feromonas
17.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731815

RESUMEN

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Asunto(s)
Antifúngicos , Quitosano , Monoterpenos Ciclohexánicos , Hidrazonas , Nanopartículas , Quitosano/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Nanopartículas/química , Monoterpenos Ciclohexánicos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Preparaciones de Acción Retardada , Pruebas de Sensibilidad Microbiana , Portadores de Fármacos/química
18.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892376

RESUMEN

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Animales , Enfermedades Cardiovasculares/terapia , Medicina Regenerativa/métodos , Células Madre/metabolismo , Células Madre/citología
19.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732168

RESUMEN

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Timol , Timol/farmacología , Timol/química , Yodo/química , Yodo/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Composición de Medicamentos/métodos
20.
Inflammopharmacology ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017993

RESUMEN

The aim of this study was to develop and evaluate bilosomes loaded with Celecoxib (CXB) for the efficient treatment of Alzheimer. The thin-film hydration approach was utilized in the formulation of CXB bilosomes (CXB-BLs). The study used a 23-factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: bile salt type (X1), medication amount (X2), and lipid-bile salt ratio (X3). The dependent responses included entrapment efficiency (Y1: EE %), particle size (Y2: PS), and zeta potential (Y3: ZP). The formulation factors were statistically optimized using the Design-Expert® program. The vesicles demonstrated remarkable CXB encapsulation efficiency, ranging from 94.16 ± 1.91 to 98.38 ± 0.85%. The vesicle sizes ranged from 241.8 ± 6.74 to 352 ± 2.34 nm. The produced formulations have high negative zeta potential values, indicating strong stability. Transmission electron microscopy (TEM) revealed that the optimized vesicles had a spherical form. CXB release from BLs was biphasic, with the release pattern following Higuchi's model. In vivo studies confirmed the efficiency of CXB-BLs in management of lipopolysaccharide-induced Alzheimer as CXB-BLs ameliorated cognitive dysfunction, decreased acetylcholinesterase (AChE), and inhibited neuro-inflammation and neuro-degeneration through reducing Toll-like receptor (TLR4), and Interleukin-1ß (IL-1ß) levels. The findings suggested that the created CXB-BLs could be a potential drug delivery strategy for Alzheimer's treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA