Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35043159

RESUMEN

Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein-protein interaction (PPI) network with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator characteristics curve of 0.90, an area under the precision-recall curve of 0.63 and a Cohen's Kappa of 0.53. In the ablation study, we find that using the multi-omics data and the integrated PPI network's information both can improve the prediction results. Additionally, the case study demonstrates the consistency between PRODeepSyn and previous studies.


Asunto(s)
Redes Neurales de la Computación , Mapas de Interacción de Proteínas , Línea Celular , Combinación de Medicamentos , Aprendizaje Automático
2.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136353

RESUMEN

Identifying synergistic drug combinations (SDCs) is a great challenge due to the combinatorial complexity and the fact that SDC is cell line specific. The existing computational methods either did not consider the cell line specificity of SDC, or did not perform well by building model for each cell line independently. In this paper, we present a novel encoder-decoder network named SDCNet for predicting cell line-specific SDCs. SDCNet learns common patterns across different cell lines as well as cell line-specific features in one model for drug combinations. This is realized by considering the SDC graphs of different cell lines as a relational graph, and constructing a relational graph convolutional network (R-GCN) as the encoder to learn and fuse the deep representations of drugs for different cell lines. An attention mechanism is devised to integrate the drug features from different layers of the R-GCN according to their relative importance so that representation learning is further enhanced. The common patterns are exploited through partial parameter sharing in cell line-specific decoders, which not only reconstruct the known SDCs but also predict new ones for each cell line. Experiments on various datasets demonstrate that SDCNet is superior to state-of-the-art methods and is also robust when generalized to new cell lines that are different from the training ones. Finally, the case study again confirms the effectiveness of our method in predicting novel reliable cell line-specific SDCs.


Asunto(s)
Redes Neurales de la Computación , Combinación de Medicamentos , Línea Celular
3.
BMC Bioinformatics ; 24(1): 448, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012551

RESUMEN

BACKGROUND: The discovery of anticancer drug combinations is a crucial work of anticancer treatment. In recent years, pre-screening drug combinations with synergistic effects in a large-scale search space adopting computational methods, especially deep learning methods, is increasingly popular with researchers. Although achievements have been made to predict anticancer synergistic drug combinations based on deep learning, the application of multi-task learning in this field is relatively rare. The successful practice of multi-task learning in various fields shows that it can effectively learn multiple tasks jointly and improve the performance of all the tasks. METHODS: In this paper, we propose MTLSynergy which is based on multi-task learning and deep neural networks to predict synergistic anticancer drug combinations. It simultaneously learns two crucial prediction tasks in anticancer treatment, which are synergy prediction of drug combinations and sensitivity prediction of monotherapy. And MTLSynergy integrates the classification and regression of prediction tasks into the same model. Moreover, autoencoders are employed to reduce the dimensions of input features. RESULTS: Compared with the previous methods listed in this paper, MTLSynergy achieves the lowest mean square error of 216.47 and the highest Pearson correlation coefficient of 0.76 on the drug synergy prediction task. On the corresponding classification task, the area under the receiver operator characteristics curve and the area under the precision-recall curve are 0.90 and 0.62, respectively, which are equivalent to the comparison methods. Through the ablation study, we verify that multi-task learning and autoencoder both have a positive effect on prediction performance. In addition, the prediction results of MTLSynergy in many cases are also consistent with previous studies. CONCLUSION: Our study suggests that multi-task learning is significantly beneficial for both drug synergy prediction and monotherapy sensitivity prediction when combining these two tasks into one model. The ability of MTLSynergy to discover new anticancer synergistic drug combinations noteworthily outperforms other state-of-the-art methods. MTLSynergy promises to be a powerful tool to pre-screen anticancer synergistic drug combinations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Biología Computacional , Biología Computacional/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Redes Neurales de la Computación , Combinación de Medicamentos
4.
Neurooncol Adv ; 5(1): vdad073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455945

RESUMEN

Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients. Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combinations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term (3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative survival metrics. Results: We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 targeting). Conclusions: Overall, we have identified via a high-throughput drug screening several new treatment strategies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combination therapy.

5.
Front Oncol ; 10: 435, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318340

RESUMEN

Acute myeloid leukemia (AML) is an aggressive group of cancers with high mortality rates and significant relapse risks. Current treatments are insufficient, and new therapies are needed. Recent discoveries suggest that AML may be particularly sensitive to chemotherapeutics that target mitochondria. To further investigate this sensitivity, six compounds that target mitochondria [IACS-010759, rotenone, cytarabine, etoposide, ABT-199 (venetoclax), and carbonyl cyanide m-chlorophenylhydrazone] were each paired with six compounds with other activities, including tyrosine kinase inhibitors (midostaurin and dasatinib), glycolytic inhibitors (2-deoxy-D-glucose, 3-bromopyruvate, and lonidamine), and the microtubule destabilizer vinorelbine. The 36 resulting drug combinations were tested for synergistic cytotoxicity against MOLM-13 and OCI-AML2 AML cell lines. Four combinations (IACS-010759 with vinorelbine, rotenone with 2-deoxy-D-glucose, carbonyl cyanide m-chlorophenylhydrazone with dasatinib, and venetoclax with lonidamine) showed synergistic cytotoxicity in both AML cell lines and were selective for tumor cells, as survival of healthy PBMCs was dramatically higher. Among these drug pairs, IACS-010759/vinorelbine decreased ATP level and impaired mitochondrial respiration and coupling efficiency most profoundly. Some of these four treatments were also effective in K-562, KU812 (chronic myelogenous leukemia) and CCRF-CEM, MOLT-4 (acute lymphoblastic leukemia) cells, suggesting that these treatments may have value in treating other forms of leukemia. Finally, two of the four combinations retained high synergy and strong selectivity in primary AML cells from patient samples, supporting the potential of these treatments for patients.

6.
Synth Syst Biotechnol ; 4(1): 67-72, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30820478

RESUMEN

There is compelling evidence that synergistic drug combinations have become promising strategies for combating complex diseases, and they have evident predominance comparing to traditional one drug - one disease approaches. In this paper, we develop a computational method, namely SyFFM, that takes pharmacological data into consideration and applies field-aware factorization machines to analyze and predict potential synergistic drug combinations. Firstly, features of drug pairs are constructed based on associations between drugs and target, and enzymes, and indication areas. Then, the synergistic scores of drug combinations are obtained by implementing field-aware factorization machines on latent vector space of these features. Finally, synergistic combinations can be predicted by introducing a threshold. We applied SyFFM to predict pairwise synergistic combinations and three-drug synergistic combinations, and the performance is good in terms of cross-validation. Besides, more than 90% combinations of the top ranked predictions are proved by literature and the analysis of parameters in model shows that our method can help to investigate and explain synergistic mechanisms underlying combinatorial therapy.

7.
Curr Top Med Chem ; 18(12): 965-974, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29600766

RESUMEN

Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations.


Asunto(s)
Biología Computacional , Descubrimiento de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Aprendizaje Automático
8.
Artif Intell Med ; 83: 35-43, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28583437

RESUMEN

OBJECTIVE: Synergistic drug combinations are promising therapies for cancer treatment. However, effective prediction of synergistic drug combinations is quite challenging as mechanisms of drug synergism are still unclear. Various features such as drug response, and target networks may contribute to prediction of synergistic drug combinations. In this study, we aimed to construct a computational model to predict synergistic drug combinations. METHODS: We designed drug physicochemical features and network features, including drug chemical structure similarity, target distance in protein-protein network and targeted pathway similarity. At the same time, we designed fifteen pharmacogenomics features using drug treated gene expression profiles based on the background of cancer-related biology network. Based on these eighteen features, we built a prediction model for Synergistic Drug combination using Random forest algorithm (SyDRa). RESULTS: Our model achieved a quite good performance with AUC value of 0.89 and Out-of-bag estimate error rate of 0.15 in training dataset. Using the random anti-cancer drug combinations which have transcriptional profile data in the Connectivity Map dataset as the testing dataset, we identified 28 potentially synergistic drug combinations, three out of which had been reported to be effective drug combinations by literatures. CONCLUSIONS: We studied eighteen features for drug combinations and built a computational model using random forest algorithm. The model was evaluated using an independent test dataset. Our model provides an efficient strategy to identify potentially synergistic drug combinations for cancer and may help reduce the search space for high-throughput synergistic drug combinations screening.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inteligencia Artificial , Biología Computacional/métodos , Neoplasias/tratamiento farmacológico , Transcriptoma/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Simulación por Computador , Bases de Datos Genéticas , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Farmacogenética , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
9.
SLAS Technol ; 22(3): 254-275, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28027446

RESUMEN

The identification of effective and long-lasting cancer therapies still remains elusive, partially due to patient and tumor heterogeneity, acquired drug resistance, and single-drug dose-limiting toxicities. The use of drug combinations may help to overcome some limitations of current cancer therapies by challenging the robustness and redundancy of biological processes. However, effective drug combination optimization requires the careful consideration of numerous parameters. The complexity of this optimization problem is clearly nontrivial and likely requires the assistance of advanced heuristic optimization techniques. In the current review, we discuss the application of optimization techniques for the identification of optimal drug combinations. More specifically, we focus on the application of phenotype-based screening approaches in the field of cancer therapy. These methods are divided into three categories: (1) modeling methods, (2) model-free approaches based on biological search algorithms, and (3) merged approaches, particularly phenotypically driven network biology methods and computation network models relying on phenotypic data. In addition to a brief description of each approach, we include a critical discussion of the advantages and disadvantages of each method, with a strong focus on the limitations and considerations needed to successfully apply such methods in biological research.


Asunto(s)
Antineoplásicos/farmacología , Interacciones Farmacológicas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Quimioterapia Combinada/métodos , Antineoplásicos/administración & dosificación , Humanos , Tamizaje Masivo/métodos , Neoplasias/tratamiento farmacológico
10.
J Control Release ; 240: 489-503, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27287891

RESUMEN

Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Portadores de Fármacos/química , Nanomedicina/métodos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Sinergismo Farmacológico , Terapia Genética/métodos , Humanos , Nanomedicina/tendencias , Neoplasias/genética
11.
J Lab Autom ; : 2211068216682338, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095178

RESUMEN

The identification of effective and long-lasting cancer therapies still remains elusive, partially due to patient and tumor heterogeneity, acquired drug resistance, and single-drug dose-limiting toxicities. The use of drug combinations may help to overcome some limitations of current cancer therapies by challenging the robustness and redundancy of biological processes. However, effective drug combination optimization requires the careful consideration of numerous parameters. The complexity of this optimization problem is clearly nontrivial and likely requires the assistance of advanced heuristic optimization techniques. In the current review, we discuss the application of optimization techniques for the identification of optimal drug combinations. More specifically, we focus on the application of phenotype-based screening approaches in the field of cancer therapy. These methods are divided into three categories: (1) modeling methods, (2) model-free approaches based on biological search algorithms, and (3) merged approaches, particularly phenotypically driven network biology methods and computation network models relying on phenotypic data. In addition to a brief description of each approach, we include a critical discussion of the advantages and disadvantages of each method, with a strong focus on the limitations and considerations needed to successfully apply such methods in biological research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA