Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 833
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38917788

RESUMEN

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

2.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857424

RESUMEN

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Mutaciones Letales Sintéticas , Transcriptoma/efectos de los fármacos , Anciano , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Ensayos Clínicos como Asunto , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia , Masculino , Neoplasias/genética , Neoplasias/patología , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia
3.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220459

RESUMEN

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Asunto(s)
Glioma/metabolismo , Ácido Glutámico/biosíntesis , Transaminasas/fisiología , Línea Celular Tumoral , Glioma/fisiopatología , Ácido Glutámico/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Mutación , Oxidación-Reducción/efectos de los fármacos , Proteínas Gestacionales/genética , Proteínas Gestacionales/fisiología , Transaminasas/antagonistas & inhibidores , Transaminasas/genética
4.
Cell ; 168(5): 890-903.e15, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28162770

RESUMEN

The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Animales , Proteínas Portadoras , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Genes Esenciales , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Mitocondriales , Procesamiento Proteico-Postraduccional , Proteínas ras/genética
5.
Cell ; 170(3): 577-592.e10, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753431

RESUMEN

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Interferencia de ARN , Línea Celular Tumoral , Biblioteca de Genes , Redes Reguladoras de Genes , Humanos , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oncogenes , ARN Interferente Pequeño , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
7.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38688279

RESUMEN

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Asunto(s)
Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Uracil-ADN Glicosidasa , Uracilo , Humanos , Uracilo/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracil-ADN Glicosidasa/genética , Reparación del ADN/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Daño del ADN , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
8.
Mol Cell ; 83(9): 1429-1445.e8, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37044098

RESUMEN

Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga
9.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832547

RESUMEN

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Asunto(s)
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilación , Daño del ADN , ADN/metabolismo , Núcleo Celular/metabolismo
10.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37932011

RESUMEN

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Replicación del ADN/genética , ADN Helicasas/metabolismo , Repeticiones de Microsatélite , Daño del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
11.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37932012

RESUMEN

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Reparación de la Incompatibilidad de ADN , Animales , Ratones , Reparación de la Incompatibilidad de ADN/genética , Mutaciones Letales Sintéticas , ADN , Inmunoterapia
12.
Mol Cell ; 82(13): 2363-2369, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35568026

RESUMEN

Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or "BRCAness" could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Roturas del ADN de Doble Cadena , Reparación del ADN , Neoplasias , Proteína BRCA1/genética , Proteína BRCA2/genética , ADN , Reparación del ADN/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
13.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34910943

RESUMEN

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Neoplasias Colorrectales/enzimología , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Quinasa 8 Dependiente de Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Complejo Mediador/antagonistas & inhibidores , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Cell ; 81(11): 2428-2444.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33882298

RESUMEN

Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.


Asunto(s)
Proteína BRCA1/genética , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , Células Madre Embrionarias de Ratones/metabolismo , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Línea Celular , Células Clonales , ADN Helicasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Ubiquitinación
15.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33333017

RESUMEN

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Nucleosomas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
16.
Mol Cell ; 81(19): 4008-4025.e7, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34508659

RESUMEN

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Primasa/metabolismo , Replicación del ADN , ADN de Neoplasias/biosíntesis , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Neoplasias/enzimología , Nucleotidiltransferasas/metabolismo , Reparación del ADN por Recombinación , Animales , Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Línea Celular Tumoral , ADN Primasa/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Femenino , Células HEK293 , Humanos , Ratones Desnudos , Enzimas Multifuncionales/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Immunity ; 51(3): 535-547.e9, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31519498

RESUMEN

Inactivating mutations of the CREBBP and EP300 acetyltransferases are among the most common genetic alterations in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). Here, we examined the relationship between these two enzymes in germinal center (GC) B cells, the normal counterpart of FL and DLBCL, and in lymphomagenesis by using conditional GC-directed deletion mouse models targeting Crebbp or Ep300. We found that CREBBP and EP300 modulate common as well as distinct transcriptional programs implicated in separate anatomic and functional GC compartments. Consistently, deletion of Ep300 but not Crebbp impaired the fitness of GC B cells in vivo. Combined loss of Crebbp and Ep300 completely abrogated GC formation, suggesting that these proteins partially compensate for each other through common transcriptional targets. This synthetic lethal interaction was retained in CREBBP-mutant DLBCL cells and could be pharmacologically targeted with selective small molecule inhibitors of CREBBP and EP300 function. These data provide proof-of-principle for the clinical development of EP300-specific inhibitors in FL and DLBCL.


Asunto(s)
Linfocitos B/fisiología , Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Epigénesis Genética/genética , Centro Germinal/fisiología , Linfoma Folicular/etiología , Linfoma de Células B Grandes Difuso/genética , Acetiltransferasas/genética , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Eliminación de Secuencia/genética , Transcripción Genética/genética
18.
Mol Cell ; 80(5): 862-875.e6, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33275888

RESUMEN

The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética
19.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516598

RESUMEN

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Genes BRCA1/fisiología , Humanos , Enzimas Multifuncionales/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
20.
EMBO J ; 42(3): e111998, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541070

RESUMEN

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Cruciforme , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Inestabilidad de Microsatélites , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Homólogo 1 de la Proteína MutL/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA