Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Respir Res ; 24(1): 217, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674160

RESUMEN

Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37833986

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment.


Asunto(s)
Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Mutación
3.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373505

RESUMEN

Despite the promising results of new CFTR targeting drugs designed for the recovery of F508del- and class III variants activity, none of them have been approved for individuals with selected rare mutations, because uncharacterized CFTR variants lack information associated with the ability of these compounds in recovering their molecular defects. Here we used both rectal organoids (colonoids) and primary nasal brushed cells (hNEC) derived from a CF patient homozygous for A559T (c.1675G>A) variant to evaluate the responsiveness of this pathogenic variant to available CFTR targeted drugs that include VX-770, VX-809, VX-661 and VX-661 combined with VX-445. A559T is a rare mutation, found in African-Americans people with CF (PwCF) with only 85 patients registered in the CFTR2 database. At present, there is no treatment approved by FDA (U.S. Food and Drug Administration) for this genotype. Short-circuit current (Isc) measurements indicate that A559T-CFTR presents a minimal function. The acute addition of VX-770 following CFTR activation by forskolin had no significant increment of baseline level of anion transport in both colonoids and nasal cells. However, the combined treatment, VX-661-VX-445, significantly increases the chloride secretion in A559T-colonoids monolayers and hNEC, reaching approximately 10% of WT-CFTR function. These results were confirmed by forskolin-induced swelling assay and by western blotting in rectal organoids. Overall, our data show a relevant response to VX-661-VX-445 in rectal organoids and hNEC with CFTR genotype A559T/A559T. This could provide a strong rationale for treating patients carrying this variant with VX-661-VX-445-VX-770 combination.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Colforsina/uso terapéutico , Benzodioxoles/farmacología , Mutación , Organoides , Genotipo
4.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269585

RESUMEN

Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Quinolonas/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cloruros/metabolismo , Combinación de Medicamentos , Células HEK293 , Humanos , Espectrometría de Masas , Mutación , Proteínas de Transporte Vesicular/metabolismo
5.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923202

RESUMEN

The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/patología , Modelos Biológicos , Mucosa Nasal/patología , Medicina de Precisión , Animales , Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Mucosa Nasal/metabolismo
6.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947992

RESUMEN

Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación , Medicina de Precisión , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Transducción de Señal
7.
J Cyst Fibros ; 23(4): 664-675, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38388235

RESUMEN

BACKGROUND: In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS: Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS: 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.


Asunto(s)
Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Indoles , Pirazoles , Quinolonas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Quinolonas/uso terapéutico , Quinolonas/farmacología , Aminofenoles/uso terapéutico , Aminofenoles/farmacología , Animales , Ratas , Humanos , Benzodioxoles/uso terapéutico , Benzodioxoles/farmacología , Indoles/uso terapéutico , Indoles/farmacología , Pirazoles/farmacología , Pirazoles/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Combinación de Medicamentos , Agonistas de los Canales de Cloruro/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico
8.
J Pers Med ; 14(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38248793

RESUMEN

The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.

9.
Pediatr Pulmonol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212240

RESUMEN

INTRODUCTION: The triple combination of elexacaftor/tezacaftor/ivacaftor (ETI) has dramatically improved the outcome of people with Cystic Fibrosis (pwCF) with at least one F508del mutation. However, carriers of rare cystic fibrosis transmembrane conductance regulator (CFTR) variants are not candidates for this innovative treatment. METHODS: In this observational study, we report the results of the compassionate use of ETI in 10 pwCF carriers of rare mutations after 2 months of treatment. Rectal organoids and short-term cultures of nasal epithelium obtained from rectal suction biopsies and nasal brushing were obtained from four subjects. RESULTS: After 2 months of ETI, all patients (4 males, mean age 30.1 ± 13.3 years) showed a significant increase of FEV1% predicted values [+8.0 (3.5-12.7) %, p < 0.010], body mass index [+0.85 (0-1.22) kg/m2, p < 0.020] and cystic fibrosis questionnaire-revised [+19.5 (6.3-29.2) points, p < 0.009]. A significant decrease of sweat chloride concentration [-11.2 (-1.7 to -34.0) mmol/L, p < 0.020] and exacerbations [-1.5 (-2 to -1), p < 0.008] was also recorded. Overall, 7 out of 10 participants were considered full responders. All patients reported cough disappearance (n = 3) or reduction (n = 7). Long-term oxygen was discontinued in two out of three patients and one also stopped noninvasive ventilation and was removed from the lung transplantation waiting list. CONCLUSIONS: Despite the limited number of cases, our results support the use of CFTR modulators in patients with rare CFTR variants that are not currently approved for ETI in Europe.

10.
J Cyst Fibros ; 22 Suppl 1: S32-S38, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529661

RESUMEN

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Medicina de Precisión , Mutación , Bronquios/metabolismo
11.
Cells ; 12(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37190083

RESUMEN

It has been suggested that in vitro studies of the rescue effect of CFTR modulator drugs in nasal epithelial cultures derived from people with cystic fibrosis have the potential to predict clinical responses to the same drugs. Hence, there is an interest in evaluating different methods for measuring in vitro modulator responses in patient-derived nasal cultures. Commonly, the functional response to CFTR modulator combinations in these cultures is assessed by bioelectric measurements, using the Ussing chamber. While this method is highly informative, it is time-consuming. A fluorescence-based, multi-transwell method for assaying regulated apical chloride conductance (Fl-ACC) promises to provide a complementary approach to theratyping in patient-derived nasal cultures. In the present work, we compared Ussing chamber measurements and fluorescence-based measurements of CFTR-mediated apical conductance in matching, fully differentiated nasal cultures derived from CF patients, homozygous for F508del (n = 31) or W1282X (n = 3), or heterozygous for Class III mutations G551D or G178R (n = 5). These cultures were obtained through a bioresource called the Cystic Fibrosis Canada-Sick Kids Program in Individual CF Therapy (CFIT). We found that the Fl-ACC method was effective in detecting positive responses to interventions for all genotypes. There was a correlation between patient-specific drug responses measured in cultures harbouring F508del, as measured using the Ussing chamber technique and the fluorescence-based assay (Fl-ACC). Finally, the fluorescence-based assay has the potential for greater sensitivity for detecting responses to pharmacological rescue strategies targeting W1282X.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fluorescencia , Mutación , Genotipo
12.
Front Mol Biosci ; 10: 1155705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006619

RESUMEN

Most of the 2,100 CFTR gene variants reported to date are still unknown in terms of their disease liability in Cystic Fibrosis (CF) and their molecular and cellular mechanism that leads to CFTR dysfunction. Since some rare variants may respond to currently approved modulators, characterizing their defect and response to these drugs is essential for effective treatment of people with CF (pwCF) not eligible for the current treatment. Here, we assessed how the rare variant, p.Arg334Trp, impacts on CFTR traffic and function and its response to existing CFTR modulators. To this end, we performed the forskolin-induced swelling (FIS) assay on intestinal organoids from 10 pwCF bearing the p.Arg334Trp variant in one or both alleles of the CFTR gene. In parallel, a novel p.Arg334Trp-CFTR expressing CFBE cell line was generated to characterize the variant individually. Results show that p.Arg334Trp-CFTR does not significantly affect the plasma membrane traffic of CFTR and evidences residual CFTR function. This CFTR variant is rescued by currently available CFTR modulators independently of the variant in the second allele. The study, predicting clinical benefit for CFTR modulators in pwCF with at least one p.Arg334Trp variant, demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs for pwCF carrying rare CFTR variants. We recommend that this personalized approach should be considered for drug reimbursement policies by health insurance systems/national health services.

13.
Children (Basel) ; 10(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670555

RESUMEN

Cystic fibrosis (CF) is a autosomal recessive, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. Although symptom management is important to avoid complications, the approval of CFTR modulator drugs in the clinic has demonstrated significant improvements by targeting the primary molecular defect of CF and thereby preventing problems related to CFTR deficiency or dysfunction. CFTR modulator therapies have positively changed the patients' quality of life, especially for those who start their use at the onset of the disease. Due to early diagnosis with the implementation of newborn screening programs and considerable progress in the treatment options, nowadays pediatric mortality was dramatically reduced. In any case, the main obstacle to treat CF is to predict the drug response of patients due to genetic complexity and heterogeneity. Advances in 3D culture systems have led to the extrapolation of disease modeling and individual drug response in vitro by producing mini organs called "organoids" easily obtained from nasal and rectal mucosa biopsies. In this review, we focus primarily on patient-derived intestinal organoids used as in vitro model for CF disease. Organoids combine high-validity of outcomes with a high throughput, thus enabling CF disease classification, drug development and treatment optimization in a personalized manner.

14.
J Pers Med ; 12(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35455747

RESUMEN

BACKGROUND: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. METHODS: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl- and HCO3- secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. RESULTS: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. CONCLUSIONS: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl- and HCO3- transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations.

15.
J Pers Med ; 12(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36013270

RESUMEN

The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.

16.
Antibiotics (Basel) ; 10(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34356748

RESUMEN

The new CFTR modulator combination, elexacaftor/tezacaftor/ivacaftor (Trikafta) was approved by the FDA in October 2019 for treatment of Cystic Fibrosis in patients 6 years of age or older who have at least one F508del mutation in one allele and a minimal-function or another F508del mutation in the other allele. However, there is a group of patients, in addition to those with rare mutations, in which despite the presence of a F508del in one allele, it was not possible to identify any mutation in the other allele. To date, these patients are excluded from treatment with Trikafta in Italy, where the CF patients carrying F508del/unknown represent about 1.3% (71 patients) of the overall Italian CF patients. In this paper we show that the Trikafta treatment of nasal epithelial cells, derived from F508del/Unknown patients, results in a significant rescue of CFTR activity. Based on our findings, we think that the F508del/Unknown patients considered in this study could obtain clinical benefits from Trikafta treatment, and we strongly suggest their eligibility for this type of treatment. This study, adding further evidence in the literature, once again confirms the validity of functional studies on nasal cells in the cystic fibrosis theratyping and personalized medicine.

17.
Expert Opin Drug Discov ; 16(8): 897-913, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33823716

RESUMEN

INTRODUCTION: Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED: CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION: Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.


Asunto(s)
Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación , Medicina de Precisión , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA