Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 34: 471-493, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30296392

RESUMEN

The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans.


Asunto(s)
Cadherinas/genética , Comunicación Celular/genética , Neuronas/citología , Receptores de Superficie Celular/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Adhesión Celular/genética , Humanos , Neuritas/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética
2.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26422333

RESUMEN

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Asunto(s)
Dendritas/fisiología , Animales , Emparejamiento Cromosómico/fisiología , Humanos
3.
Proc Natl Acad Sci U S A ; 120(50): e2303580120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060565

RESUMEN

Protein nanoparticles play pivotal roles in many areas of bionanotechnology, including drug delivery, vaccination, and diagnostics. These technologies require control over the distinct particle morphologies that protein nanocontainers can adopt during self-assembly from their constituent protein components. The geometric construction principle of virus-derived protein cages is by now fairly well understood by analogy to viral protein shells in terms of Caspar and Klug's quasi-equivalence principle. However, many artificial, or genetically modified, protein containers exhibit varying degrees of quasi-equivalence in the interactions between identical protein subunits. They can also contain a subset of protein subunits that do not participate in interactions with other assembly units, called capsomers, leading to gaps in the particle surface. We introduce a method that exploits information on the local interactions between the capsomers to infer the geometric construction principle of these nanoparticle architectures. The predictive power of this approach is demonstrated here for a prominent system in nanotechnology, the AaLS pentamer. Our method not only rationalises hitherto discovered cage structures but also predicts geometrically viable options that have not yet been observed. The classification of nanoparticle architecture based on the geometric properties of the interaction network closes a gap in our current understanding of protein container structure and can be widely applied in protein nanotechnology, paving the way to programmable control over particle polymorphism.


Asunto(s)
Nanopartículas , Subunidades de Proteína , Nanotecnología
4.
Chemistry ; 30(29): e202400926, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38567873

RESUMEN

The molecular-level scrutinization of on-surface tiling garners considerable interest among scientists. Herein, we demonstrate molecular-level heptagonal tiling using the self-assembly of a heptagonal meta-phenylene-ethynylene macrocycle featuring 14 long alkoxy substituents at the liquid-graphite interface using scanning tunneling microscopy. This heptagonal macrocycle produces an antiparallel pattern at the 1-phenyloctane-graphite interface through van der Waals interactions between the alkoxy chains. This pattern resembles the densely packed pattern of heptagonal tiles, albeit with variations in the orientations and spacing of heptagonal cores owing to intermolecular interactions between the alkoxy chains. Conversely, at the 1,2,4-trichlorobenzene-graphite interface, the heptagonal molecule forms an oblique pattern composed of four independent molecular orientations. This phenomenon arises from core distortion induced by the coadsorption of the solvent molecules within the intrinsic macrocyclic pores. This study elucidates the design strategy - specifically, the choice of heptagonal molecular building block - for heptagonal tiling and fills a crucial gap in the field of two-dimensional crystal engineering.

5.
Angew Chem Int Ed Engl ; 63(6): e202314454, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38009676

RESUMEN

Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.

6.
Glia ; 71(8): 1921-1946, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029775

RESUMEN

Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.


Asunto(s)
Astrocitos , Receptores Acoplados a Proteínas G , Humanos , Ratones , Animales , Astrocitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsiones/metabolismo
7.
J Comput Chem ; 44(9): 954-961, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36510469

RESUMEN

Described are the first two molecular designs of the triply periodic Schwarz P surface using merely the Schläfli t{3,7} pattern of sp2 -hybridized carbon atoms. Each atom is exactly part of one heptagon and two hexagon rings so that two heptagons do not share the same edge or vertex. Such pattern, called hyperbolic soccer ball obeys the isolated-heptagon rule with the minimum possible number of hexagons between heptagons similar to the isolation of pentagons from hexagons in the C60 fullerene. Both of the designed P surfaces are unbalanced, that is, they have two unequal sides, and belong to space groups P432 of the cubic system, and P4/ncc of the tetragonal system, respectively. Unit cells have a multiple of 24 heptagons similar to the only one previously known in literature Schwarzite with the hyperbolic soccer ball pattern-the D surface of Vanderbilt and Tersoff. The geometry of the periodic structures and unit cell parameters were fully optimized by DFT calculations using CASTEP software with PBE and PBESOL functionals under generalized gradient approximation. The effect of P and D surface dilution by hexagons on the calculated density, elastic and electronic properties is discussed.

8.
Chembiochem ; 24(22): e202300460, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37675822

RESUMEN

In structural DNA nanotechnology, E-tiling DNA nanotubes are evidenced to be homogeneous in diameter and thus have great potential in biomedical applications such as cellular transport and communication, transmembrane ion/molecule channeling, and drug delivery. However, a precise structural description of chiral DNA nanotubes with chiral parameters was lacking, thus greatly hindering their application breadth and depth, until we recently raised and partly solved this problem. In this perspective, we summarize recent progress in defining the chiral indices and handedness of E-tiling DNA nanotubes by microscopic imaging, especially atomic force microscopy (AFM) imaging. Such a detailed understanding of the chiral structures of E-tiling DNA nanotubes will be very helpful in the future, on the one hand for engineering DNA nanostructures precisely, and, on the other, for realizing specific physicochemical properties and biological functions successfully.


Asunto(s)
Nanoestructuras , Nanotubos , Lateralidad Funcional , Nanotubos/química , Nanotecnología/métodos , Nanoestructuras/química , ADN/química , Microscopía de Fuerza Atómica/métodos
9.
Chembiochem ; 24(17): e202300420, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37464981

RESUMEN

Using oligonucleotides to weave 2D tiles such as double crossovers (DX) and multi-arm junction (mAJ) tiles and arrays is well-known, but weaving 3D tiles is rare. Here, we report the construction of two new bilayer tiles in high yield using small circular 84mer oligonucleotides as scaffolds. Further, we designed five E-tiling approaches to construct porous nanotubes of microns long in medium yield via solution assembly and densely covered planar microscale arrays via surface-mediated assembly.


Asunto(s)
ADN Circular , Nanoestructuras , Conformación de Ácido Nucleico , ADN , Oligonucleótidos , Nanotecnología , Microscopía de Fuerza Atómica
10.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34097003

RESUMEN

Coronavirus disease 2019 pandemic is the most damaging pandemic in recent human history. Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and variant strains is paramount for recovery from this pandemic. Conventional SARS-CoV-2 tests interrogate only limited regions of the whole SARS-CoV-2 genome, which are subjected to low specificity and miss the opportunity of detecting variant strains. In this work, we developed the first SARS-CoV-2 tiling array that captures the entire SARS-CoV-2 genome at single nucleotide resolution and offers the opportunity to detect point mutations. A thorough bioinformatics protocol of two base calling methods has been developed to accompany this array. To demonstrate the effectiveness of the tiling array, we genotyped all genomic positions of eight SARS-CoV-2 samples. Using high-throughput sequencing as the benchmark, we show that the tiling array had a genome-wide accuracy of at least 99.5%. From the tiling array analysis results, we identified the D614G mutation in the spike protein in four of the eight samples, suggesting the widespread distribution of this variant at the early stage of the outbreak in the United States. Two additional nonsynonymous mutations were identified in one sample in the nucleocapsid protein (P13L and S197L), which may complicate future vaccine development. With around $5 per array, supreme accuracy, and an ultrafast bioinformatics protocol, the SARS-CoV-2 tiling array makes an invaluable toolkit for combating current and future pandemics. Our SARS-CoV-2 tilting array is currently utilized by Molecular Vision, a CLIA-certified lab for SARS-CoV-2 diagnosis.


Asunto(s)
Prueba de COVID-19 , COVID-19/genética , Genómica , SARS-CoV-2/genética , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación/genética , SARS-CoV-2/patogenicidad
11.
J Med Virol ; 95(11): e29222, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37964661

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the critical role of genomic surveillance in tracking rapidly spreading viruses and their evolving lineages. The emergence of the SARS-CoV-2 tiling array, a comprehensive tool capable of capturing the entire viral genome, has presented a promising avenue for variants. This study introduces the SARS-CoV-2 tiling array as a novel method for port inspection. Using next-generation sequencing as a benchmark, 35 positive samples underwent sequencing through both methodologies, including the Alpha variant (B.1.1.7), Delta variants (AY.120, AY.122, AY.23.1), and Omicron variants (BA.1, BA.2, BA.2.75, BA.4, BA.5, BE.1, BF.7, BN.1, BQ.1, XBB.1) within the sample set. The whole-genome tiling array demonstrated successful identification of various sublineages of SARS-CoV-2. The average sequencing coverage rates were 99.22% (96.82%-99.92%) for the whole-genome tiling array and 98.56% (92.81%-99.59%) for Illumina sequencing, respectively. The match rates of these two methods ranged from 92.81%-99.59%, with an average rate of 98.56%. Among the benefits of the whole-genome tiling array are its cost-effectiveness and equipment simplification, making it particularly suitable for identifying SARS-CoV-2 variants in the front-line inspection department. The aforementioned findings provide valuable insights into the surveillance of COVID-19 and present a pragmatic solution for improving quarantine measures at entry points.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , China/epidemiología , Genoma Viral
12.
Virol J ; 20(1): 42, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36872317

RESUMEN

As the worldwide spreading epidemic of SARS-CoV-2, quick inspection and quarantine of passengers for SARS-CoV-2 infection are essential for controlling the spread of SARS-CoV-2, especially the cross-border transmission. This study reports a SARS-CoV-2 genome sequencing method based on a re-sequencing tiling array successfully used in border inspection and quarantine. The tiling array chip has four cores, with one core of 240,000 probes dedicated to the whole genome sequencing of the SAR-CoV-2 genome. The assay protocol has been improved to reduce the detection time to within one day and can detect 96 samples in parallel. The detection accuracy has been validated. This fast and simple procedure is also of low cost and high accuracy, and it is particularly suitable for the rapid tracking of viral genetic variants in custom inspection applications. Combining these properties means this method has significant application potential in the clinical investigation and quarantine of SARS-CoV-2. We used this SARS-CoV-2 genome re-sequencing tiling array to inspect and quarantine China's entry and exit ports in the Zhejiang Province. From November 2020 to January 2022, we observed the gradual shift of SARS-CoV-2 variants from the D614G type to the Delta Variant, and then to the dominance of the Omicron variant recently, consistently with the global emergency pattern of the new SARS-CoV-2 variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cuarentena , Mapeo Cromosómico
13.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674592

RESUMEN

Complete and accurate identification of genetic variants associated with specific phenotypes can be challenging when there is a high level of genomic divergence between individuals in a study and the corresponding reference genome. We have applied the Cas9-mediated enrichment coupled to nanopore sequencing to perform a targeted de novo assembly and accurately reconstruct a genomic region of interest. This approach was used to reconstruct a 250-kbp target region on chromosome 5 of the common bean genome (Phaseolus vulgaris) associated with the shattering phenotype. Comparing a non-shattering cultivar (Midas) with the reference genome revealed many single-nucleotide variants and structural variants in this region. We cut five 50-kbp tiled sub-regions of Midas genomic DNA using Cas9, followed by sequencing on a MinION device and de novo assembly, generating a single contig spanning the whole 250-kbp region. This assembly increased the number of Illumina reads mapping to genes in the region, improving their genotypability for downstream analysis. The Cas9 tiling approach for target enrichment and sequencing is a valuable alternative to whole-genome sequencing for the assembly of ultra-long regions of interest, improving the accuracy of downstream genotype-phenotype association analysis.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Sistemas CRISPR-Cas/genética , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica
14.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513336

RESUMEN

Sulfur-containing macrocycles have attracted substantial interest because they exhibit unique characteristics due to their polygonal ring-shaped skeleton. In this study, a thianthrene-based cyclic tetramer with the sulfur linker, thiacalix[4]-2,8-thianthrene (TC[4]TT), was successfully prepared from a cyclo-p-phenylenesulfide derivative using acid-induced intramolecular condensation. Single crystal X-ray diffraction revealed that TC[4]TT adopts an alternative octagonal form recessed to the inner side. Its internal cavity included small solvents, such as chloroform and carbon disulfide. Due to its polygonal geometry, TC[4]TT laminated in a honeycomb-like pattern with a porous channel. Furthermore, TC[4]TT showed fluorescence and phosphorescence emission in a CH2Cl2 solution at ambient and liquid nitrogen temperatures. Both emission bands were slightly redshifted compared with those of the reference compounds (di(thanthren-2-yl)sulfane (TT2S) and thianthrene (TT)). This work describes a sulfur-containing thiacalixheterocycle-based macrocyclic system with intriguing supramolecular chemistry based on molecular tiling and photophysical properties in solution.

15.
Entropy (Basel) ; 25(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36673233

RESUMEN

We used the complete set of convex pentagons to enable filing the plane without any overlaps or gaps (including the Marjorie Rice tiles) as generators of Voronoi tessellations. Shannon entropy of the tessellations was calculated. Some of the basic mosaics are flexible and give rise to a diversity of Voronoi tessellations. The Shannon entropy of these tessellations varied in a broad range. Voronoi tessellation, emerging from the basic pentagonal tiling built from hexagons only, was revealed (the Shannon entropy of this tiling is zero). Decagons and hendecagon did not appear in the studied Voronoi diagrams. The most abundant Voronoi tessellations are built from three different kinds of polygons. The most widespread is the combination of pentagons, hexagons, and heptagons. The most abundant polygons are pentagons and hexagons. No Voronoi tiling built only of pentagons was registered. Flexible basic pentagonal mosaics give rise to a diversity of Voronoi tessellations, which are characterized by the same symmetry group. However, the coordination number of the vertices is variable. These Voronoi tessellations may be useful for the interpretation of the iso-symmetrical phase transitions.

16.
Mol Ther ; 29(1): 208-224, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33002419

RESUMEN

While drug resistance mutations provide the gold standard proof for drug target engagement, target deconvolution of inhibitors identified from a phenotypic screen remains challenging. Genetic screening for functional in-frame drug resistance mutations by tiling CRISPR-Cas nucleases across protein coding sequences is a method for identifying a drug's target and binding site. However, the applicability of this approach is constrained by the availability of nuclease target sites across genetic regions that mediate drug resistance upon mutation. In this study, we show that an enhanced AsCas12a variant (enAsCas12a), which harbors an expanded targeting range, facilitates screening for drug resistance mutations with increased activity and resolution in regions that are not accessible to other CRISPR nucleases, including the prototypical SpCas9. Utilizing enAsCas12a, we uncover new drug resistance mutations against inhibitors of NAMPT and KIF11. These findings demonstrate that enAsCas12a is a promising new addition to the CRISPR screening toolbox and allows targeting sites not readily accessible to SpCas9.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resistencia a Medicamentos/genética , Endonucleasas/metabolismo , Pruebas Genéticas/métodos , Mutación , Sitios de Unión , Unión Proteica
17.
Proc Natl Acad Sci U S A ; 116(19): 9168-9177, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996124

RESUMEN

Innocuous mechanical stimuli acting on the skin are detected by sensory neurons, known as low-threshold mechanoreceptors (LTMRs). LTMRs are classified based on their response properties, action potential conduction velocity, rate of adaptation to static indentation of the skin, and terminal anatomy. Here, we report organizational properties of the cutaneous and central axonal projections of the five principal hairy skin LTMR subtypes. We find that axons of neurons within a particular LTMR class are largely nonoverlapping with respect to their cutaneous end organs (e.g., hair follicles), with Aß rapidly adapting-LTMRs being the sole exception. Individual neurons of each LTMR class are mostly nonoverlapping with respect to their associated hair follicles, with the notable exception of C-LTMRs, which exhibit multiple branches that redundantly innervate individual hair follicles. In the spinal cord, LTMR central projections exhibit rostrocaudal elongation and mediolateral compression, compared with their cutaneous innervation patterns, and these central projections also exhibit a fine degree of homotypic topographic adjacency. These findings thus reveal homotypic tiling of LTMR subtype axonal projections in hairy skin and a remarkable degree of spatial precision of spinal cord axonal termination patterns, suggesting a somatotopically precise tactile encoding capability of the mechanosensory dorsal horn.


Asunto(s)
Mecanorreceptores/química , Animales , Axones/química , Axones/fisiología , Humanos , Mamíferos/fisiología , Mecanorreceptores/fisiología , Ratones , Piel/química , Fenómenos Fisiológicos de la Piel , Médula Espinal/química , Médula Espinal/fisiología , Tacto
18.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236253

RESUMEN

Thailand, like other countries worldwide, has experienced instability in recent years. If current trends continue, the number of crimes endangering people or property will expand. Closed-circuit television (CCTV) technology is now commonly utilized for surveillance and monitoring to ensure people's safety. A weapon detection system can help police officers with limited staff minimize their workload through on-screen surveillance. Since CCTV footage captures the entire incident scenario, weapon detection becomes challenging due to the small weapon objects in the footage. Due to public datasets providing inadequate information on our interested scope of CCTV image's weapon detection, an Armed CCTV Footage (ACF) dataset, the self-collected mockup CCTV footage of pedestrians armed with pistols and knives, was collected for different scenarios. This study aimed to present an image tilling-based deep learning for small weapon object detection. The experiments were conducted on a public benchmark dataset (Mock Attack) to evaluate the detection performance. The proposed tilling approach achieved a significantly better mAP of 10.22 times. The image tiling approach was used to train different object detection models to analyze the improvement. On SSD MobileNet V2, the tiling ACF Dataset achieved an mAP of 0.758 on the pistol and knife evaluation. The proposed method for enhancing small weapon detection by using the tiling approach with our ACF Dataset can significantly enhance the performance of weapon detection.


Asunto(s)
Crimen , Televisión , Humanos
19.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456979

RESUMEN

Neurons induce astrocyte branches that approach synapses. Each astrocyte tiles by expanding branches in an exclusive territory, with limited entries for the neighboring astrocyte branches. However, how astrocytes form exclusive territories is not known. For example, the extensive branching of astrocytes may sterically interfere with the penetration of other astrocyte branches. Alternatively, astrocyte branches may actively avoid each other or remove overlapped branches to establish a territory. Here, we show time-lapse imaging of the multi-order branching process of GFP-labeled astrocytes. Astrocyte branches grow in the direction where other astrocyte branches do not exist. Neurons that had just started to grow dendrites were able to induce astrocyte branching and tiling. Upon neuronal loss by glutamate excitotoxicity, astrocytes' terminal processes retracted and more branches went over other branches. Our results indicate that neurons induce astrocyte branches and make them avoid each other.


Asunto(s)
Astrocitos , Neuronas , Astrocitos/fisiología , Ácido Glutámico , Neuronas/fisiología , Sinapsis/fisiología
20.
Methods ; 174: 11-19, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978505

RESUMEN

Expansion microscopy was invented to surpass the optical diffraction limit by physically expanding biological specimens with swellable polymers. Due to the large sizes of expanded specimens, 3D imaging techniques that are capable to acquire large volumetric data rapidly at high spatial resolution are therefore required for expansion microscopy. Lattice light sheet microscopy (LLSM) was developed to image biological specimens rapidly at high 3D spatial resolution by using a thin lattice light sheet for sample illumination. However, due to the current limitations of LLSM mechanism and the optical design of LLS microscopes, it is challenging to image large expanded specimens at isotropic high spatial resolution using LLSM. To address the problem, we first optimized the sample preparation and expansion procedure for LLSM. Then, we implement a tiling lattice light sheet method to minimize sample translation during imaging and achieve much faster 3D imaging speed at high spatial resolution with more isotropic performance. Taken together, we report a general and improved 3D super-resolution imaging method for expanded samples.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Animales , Biopsia , Células Cultivadas , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Microtúbulos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA