Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hered ; 115(4): 480-486, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38416051

RESUMEN

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding interspecific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n = 78. We evaluated mapping quality for previous RADseq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.


Asunto(s)
Coyotes , Genoma , Genómica , Lobos , Animales , Coyotes/genética , Lobos/genética , Genómica/métodos , Femenino , Hibridación Genética , Filogenia , Perros/genética , Haplotipos , Mapeo Cromosómico , Canidae/genética
2.
Front Genet ; 15: 1338224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510276

RESUMEN

Cattle contribute to the nutritional needs and economy of a place. The performance and fitness of cattle depend on the response and adaptation to local climatic conditions. Genomic and genetic studies are important for advancing cattle breeding, and availability of relevant reference genomes is essential. In the present study, the genome of a Vechur calf was sequenced on both short-read Illumina and long-read Nanopore sequencing platforms. The hybrid de novo assembly approach was deployed to obtain an average contig length of 1.97 Mbp and an N50 of 4.94 Mbp. By using a short-read genome sequence of the corresponding sire and dam, a haplotype-resolved genome was also assembled. In comparison to the taurine reference genome, we found 28,982 autosomal structural variants and 16,926,990 SNVs, with 883,544 SNVs homozygous in the trio samples. Many of these SNPs have been reported to be associated with various QTLs including growth, milk yield, and milk fat content, which are crucial determinants of cattle production. Furthermore, population genotype data analysis indicated that the present sample belongs to an Indian cattle breed forming a unique cluster of Bos indicus. Subsequent FST analysis revealed differentiation of the Vechur cattle genome at multiple loci, especially those regions related to whole body growth and cell division, especially IGF1, HMGA2, RRM2, and CD68 loci, suggesting a possible role of these genes in its small stature and better disease resistance capabilities in comparison with the local crossbreeds. This provides an opportunity to select and engineer cattle breeds optimized for local conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA