Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396828

RESUMEN

The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.


Asunto(s)
Enfermedades Musculares , Retículo Sarcoplasmático , Ratones , Masculino , Animales , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Envejecimiento/metabolismo , Enfermedades Musculares/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805973

RESUMEN

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) form a clinical continuum associating progressive muscle weakness with additional multi-systemic anomalies of the bones, skin, spleen, and platelets. TAM/STRMK arises from excessive extracellular Ca2+ entry due to gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1. Currently, no treatment is available. Here we assessed the therapeutic potential of ORAI1 downregulation to anticipate and reverse disease development in a faithful mouse model carrying the most common TAM/STRMK mutation and recapitulating the main signs of the human disorder. To this aim, we crossed Stim1R304W/+ mice with Orai1+/- mice expressing 50% of ORAI1. Systematic phenotyping of the offspring revealed that the Stim1R304W/+Orai1+/- mice were born with a normalized ratio and showed improved postnatal growth, bone architecture, and partly ameliorated muscle function and structure compared with their Stim1R304W/+ littermates. We also produced AAV particles containing Orai1-specific shRNAs, and intramuscular injections of Stim1R304W/+ mice improved the skeletal muscle contraction and relaxation properties, while muscle histology remained unchanged. Altogether, we provide the proof-of-concept that Orai1 silencing partially prevents the development of the multi-systemic TAM/STRMK phenotype in mice, and we also established an approach to target Orai1 expression in postnatal tissues.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Dislexia , Ictiosis , Miopatías Estructurales Congénitas , Proteína ORAI1 , Animales , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Calcio/metabolismo , Dislexia/genética , Dislexia/metabolismo , Eritrocitos Anormales , Ictiosis/genética , Ictiosis/metabolismo , Ratones , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Miosis , Fatiga Muscular , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fenotipo , Bazo/anomalías , Bazo/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
3.
J Muscle Res Cell Motil ; 42(2): 233-249, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32812118

RESUMEN

In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.


Asunto(s)
Calcio , Miopatías Estructurales Congénitas , Animales , Calcio/metabolismo , Señalización del Calcio , Ratones , Músculo Esquelético/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Muscle Nerve ; 64(5): 567-575, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34368974

RESUMEN

INTRODUCTION/AIMS: Stromal interaction molecule 1 (STIM1) is a reticular Ca2+ sensor composed of a luminal and a cytosolic domain. Autosomal dominant mutations in STIM1 cause tubular aggregate myopathy and Stormorken syndrome or its variant York platelet syndrome. In this study we aimed to expand the features related to new variants in STIM1. METHODS: We performed a cross-sectional study of individuals harboring monoallelic STIM1 variants recruited at five tertiary centers involved in a study of inherited myopathies analyzed with a multigene-targeted panel. RESULTS: We identified seven individuals (age range, 26-57 years) harboring variants in STIM1, including five novel changes: three located in the EF-hand domain, one in the sterile α motif (SAM) domain, and one in the cytoplasmatic region of the protein. Functional evaluation of the pathogenic variants using a heterologous expression system and measuring store-operated calcium entry demonstrated their causative role and suggested a link of new variants with the clinical phenotype. Muscle contractures, found in three individuals, showed variability in body distribution and in the number of joints involved. Three patients showed cardiac and respiratory involvement. Short stature, hyposplenism, sensorineural hearing loss, hypothyroidism, and Gilbert syndrome were variably observed among the patients. Laboratory tests revealed hyperCKemia in six patients, thrombocytopenia in two patients, and hypocalcemia in one patient. Muscle biopsy showed the presence of tubular aggregates in three patients, type I fiber atrophy in one patient, and nonspecific myopathic changes in two patients. DISCUSSION: Our clinical, histological, and molecular data expand the genetic and clinical spectrum of STIM1-related diseases.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Miopatías Estructurales Congénitas , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Trastornos de las Plaquetas Sanguíneas/patología , Calcio/metabolismo , Estudios Transversales , Humanos , Miosis/genética , Miosis/metabolismo , Miosis/patología , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
5.
Hum Mutat ; 41(1): 17-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31448844

RESUMEN

Calcium (Ca2+ ) acts as a ubiquitous second messenger, and normal cell and tissue physiology strictly depends on the precise regulation of Ca2+ entry, storage, and release. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling extracellular Ca2+ entry, and mainly relies on the accurate interplay between the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Mutations in STIM1 or ORAI1 result in abnormal Ca2+ homeostasis and are associated with severe human disorders. Recessive loss-of-function mutations impair SOCE and cause combined immunodeficiency, while dominant gain-of-function mutations induce excessive extracellular Ca2+ entry and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). TAM and STRMK are spectra of the same multisystemic disease characterized by muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. To date, 42 TAM/STRMK families have been described, and here we report five additional families for which we provide clinical, histological, ultrastructural, and genetic data. In this study, we list and review all new and previously reported STIM1 and ORAI1 cases, discuss the pathomechanisms of the mutations based on the known functions and the protein structure of STIM1 and ORAI1, draw a genotype/phenotype correlation, and delineate an efficient screening strategy for the molecular diagnosis of TAM/STRMK.


Asunto(s)
Biomarcadores , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Trastornos de las Plaquetas Sanguíneas/genética , Dislexia/diagnóstico , Dislexia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Ictiosis/diagnóstico , Ictiosis/genética , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/genética , Miosis/diagnóstico , Miosis/genética , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Bazo/anomalías , Alelos , Calcio/metabolismo , Manejo de la Enfermedad , Eritrocitos Anormales , Mutación con Ganancia de Función , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Fatiga Muscular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
6.
Neuropathology ; 40(6): 559-569, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33073872

RESUMEN

Tubular aggregate myopathy (TAM) is a progressive disorder characterized by muscle weakness, cramps, and myalgia. TAM clinically overlaps with Stormorken syndrome (STRMK), combining TAM with miosis, thrombocytopenia, hyposplenism, ichthyosis, short stature, and dyslexia. TAM and STRMK arise from gain-of-function mutations in STIM1 (stromal interaction molecule 1) or ORAI1, both encoding key regulators of Ca2+ homeostasis, and mutations in either gene result in excessive extracellular Ca2+ entry. The pathomechanistic similarities and differences between TAM and STRMK are only partially understood. Here we provide functional in vitro experiments demonstrating that STIM1 harboring the TAM D84G or the STRMK R304W mutation similarly cluster and exert a dominant effect on the wild-type protein. Both mutants recruit ORAI1 to the clusters, increase cytosolic Ca2+ levels, promote major nuclear import of the Ca2+ -dependent transcription factor NFAT (nuclear factor of activated T cells), and trigger the formation of circular membrane stacks. In conclusion, the analyzed TAM and STRMK mutations have a comparable impact on STIM1 protein function and downstream effects of excessive Ca2+ entry, highlighting that TAM and STRMK involve a common pathomechanism.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Dislexia/genética , Ictiosis/genética , Trastornos Migrañosos/genética , Miosis/genética , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Bazo/anomalías , Molécula de Interacción Estromal 1/genética , Animales , Trastornos de las Plaquetas Sanguíneas/metabolismo , Trastornos de las Plaquetas Sanguíneas/patología , Células Cultivadas , Dislexia/metabolismo , Dislexia/patología , Eritrocitos Anormales/metabolismo , Eritrocitos Anormales/patología , Humanos , Ictiosis/metabolismo , Ictiosis/patología , Ratones , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Miosis/metabolismo , Miosis/patología , Fatiga Muscular/genética , Mutación , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Bazo/metabolismo , Bazo/patología , Transfección
7.
Int J Mol Sci ; 21(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575830

RESUMEN

Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.


Asunto(s)
Autofagia , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Motivos EF Hand , Humanos , Simulación de Dinámica Molecular , Mutación , Miopatías Estructurales Congénitas/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformación Proteica en Hélice alfa , Desplegamiento Proteico , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo
8.
J Toxicol Pathol ; 33(2): 115-119, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32425344

RESUMEN

To examine the biological and morphological features of tubular aggregates (TAs) in the skeletal muscles of non-obese diabetic/Cg-PrkdcscidIl2rgtm1Sug /ShiJic (NOG) mice, 73 male and 72 female specific-pathogen-free NOG mice were examined at 7, 18, 22, 26, and 52 weeks of age. TAs were observed as intracytoplasmic eosinophilic materials of the femoral muscles in males at 18, 22, 26, and 52 weeks of age and in females at 52 weeks of age; gender-related differences were noted in the onset time and lesion degree. Intracytoplasmic materials were positive for Gomori's trichrome stain. Electron microscopy revealed that TAs were composed of an accumulation of dilated sarcoplasmic reticulum. In addition, TAs were observed in the femoral and gastrocnemius muscles, but not in the soleus and diaphragm muscles, suggesting that TAs are present in fast muscle fibers. The morphology of TAs and the type of myofibers involved, as well as the gender difference in NOG mice were essentially the same as those of TAs observed in C57BL/6J and MRL+/+ mice.

9.
Hum Mutat ; 38(4): 426-438, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28058752

RESUMEN

Calcium (Ca2+ ) is a physiological key factor, and the precise modulation of free cytosolic Ca2+ levels regulates multiple cellular functions. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain-of-function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, whereas recessive loss-of-function mutations are associated with immunodeficiency. Here, we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI1 channels, whereas T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non-muscle features of our patients strongly suggests that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction.


Asunto(s)
Activación del Canal Iónico/genética , Mutación Missense , Miopatías Estructurales Congénitas/genética , Proteína ORAI1/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Calcio/metabolismo , Células Cultivadas , Dislexia/genética , Dislexia/metabolismo , Eritrocitos Anormales/metabolismo , Femenino , Células HEK293 , Humanos , Ictiosis/genética , Ictiosis/metabolismo , Masculino , Ratones Noqueados , Microscopía Fluorescente/métodos , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Miosis/genética , Miosis/metabolismo , Fatiga Muscular/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Linaje , Homología de Secuencia de Aminoácido , Bazo/anomalías , Bazo/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
10.
Hum Mutat ; 38(12): 1761-1773, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895244

RESUMEN

Here, we report the identification of three novel missense mutations in the calsequestrin-1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+ -dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+ -dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Variación Genética , Proteínas Mitocondriales/genética , Miopatías Estructurales Congénitas/genética , Adulto , Anciano , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutación Missense , Multimerización de Proteína , Proteolisis , Proteínas Recombinantes , Alineación de Secuencia , Imagen de Lapso de Tiempo , Secuenciación Completa del Genoma
11.
Clin Genet ; 91(5): 780-786, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27882542

RESUMEN

We present three members of an Italian family affected by tubular aggregate myopathy (TAM) and congenital miosis harboring a novel missense mutation in ORAI1. All patients had a mild, late onset TAM revealed by asymptomatic creatine kinase (CK) elevation and congenital miosis consistent with a Stormorken-like Syndrome, in the absence of thrombocytopathy. Muscle biopsies showed classical histological findings but ultrastructural analysis revealed atypical tubular aggregates (TAs). The whole body muscle magnetic resonance imaging (MRI) showed a similar pattern of muscle involvement that correlated with clinical severity. The lower limbs were more severely affected than the scapular girdle, and thighs were more affected than legs. Molecular analysis revealed a novel c.290C>G (p.S97C) mutation in ORAI1 in all affected patients. Functional assays in both human embryonic kidney (HEK) cells and myotubes showed an increased rate of Ca2+ entry due to a constitutive activation of the CRAC channel, consistent with a 'gain-of-function' mutation. In conclusion, we describe an Italian family harboring a novel heterozygous c.290C>G (p.S97C) mutation in ORAI1 causing a mild- and late-onset TAM and congenital miosis via constitutive activation of the CRAC channel. Our findings extend the clinical and genetic spectrum of the ORAI1-related TAM.


Asunto(s)
Mutación , Miopatías Estructurales Congénitas/genética , Proteína ORAI1/genética , Trastornos de la Pupila/congénito , Edad de Inicio , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Miopatías Estructurales Congénitas/fisiopatología , Proteína ORAI1/metabolismo , Linaje , Trastornos de la Pupila/genética
12.
Int J Mol Sci ; 17(11)2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27879676

RESUMEN

Calcium is a crucial mediator of cell signaling in skeletal muscles for basic cellular functions and specific functions, including contraction, fiber-type differentiation and energy production. The sarcoplasmic reticulum (SR) is an organelle that provides a large supply of intracellular Ca2+ in myofibers. Upon excitation, it releases Ca2+ into the cytosol, inducing contraction of myofibrils. During relaxation, it takes up cytosolic Ca2+ to terminate the contraction. During exercise, Ca2+ is cycled between the cytosol and the SR through a system by which the Ca2+ pool in the SR is restored by uptake of extracellular Ca2+ via a specific channel on the plasma membrane. This channel is called the store-operated Ca2+ channel or the Ca2+ release-activated Ca2+ channel. It is activated by depletion of the Ca2+ store in the SR by coordination of two main molecules: stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (ORAI1). Recently, myopathies with a dominant mutation in these genes have been reported and the pathogenic mechanism of such diseases have been proposed. This review overviews the calcium signaling in skeletal muscles and role of store-operated Ca2+ entry in calcium homeostasis. Finally, we discuss the phenotypes and the pathomechanism of myopathies caused by mutations in the STIM1 and ORAI1 genes.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Animales , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Homeostasis , Humanos , Transporte Iónico , Músculo Esquelético/patología , Mutación , Miofibrillas/metabolismo , Miofibrillas/patología , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1/metabolismo
13.
Neuropathol Appl Neurobiol ; 41(3): 304-18, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24957221

RESUMEN

AIM: Upon denervation, skeletal muscle fibres initiate complex changes in gene expression. Many of these genes are involved in muscle fibre remodelling and atrophy. Amyotrophic lateral sclerosis (ALS) leads to progressive neurodegeneration and neurogenic muscular atrophy (NMA). Disturbed calcium homeostasis and misfolded protein aggregation both in motor neurones and muscle fibres are key elements of ALS pathogenesis that are mutually interdependent. Therefore, we hypothesized that the calcium sensor STIM1 might be abnormally modified and involved in muscle fibre degeneration in ALS and other types of NMA. METHODS: We examined ALS and NMA patient biopsy and autopsy tissue and tissue from G93A SOD1 mice by immunohistochemistry and immunoblotting. RESULTS: In normal human and mouse muscle STIM1 was found to be differentially expressed in muscle fibres of different types and to concentrate at neuromuscular junctions, compatible with its known role in calcium sensing. Denervated muscle fibres of sALS and NMA cases and SOD1 mice showed diffusely increased STIM1 immunoreactivity along with ubiquitinated material. In addition, distinct focal accumulations of STIM1 were observed in target structures within denervated fibres of sALS and other NMA as well as SOD1 mouse muscles. Large STIM1-immunoreactive structures were found in ALS-8 patient muscle harbouring the P56S mutation in the ER protein VAPB. CONCLUSION: These findings suggest that STIM1 is involved in several ways in the reaction of muscle fibres to denervation, probably reflecting alterations in calcium homeostasis in denervated muscle fibres.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteínas de Neoplasias/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Ratones , Microscopía Electrónica de Transmisión , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Fenotipo , Molécula de Interacción Estromal 1
14.
Hum Mutat ; 35(10): 1221-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044882

RESUMEN

Stormorken syndrome is a rare autosomal dominant disorder characterized by a phenotype that includes miosis, thrombocytopenia/thrombocytopathy with bleeding time diathesis, intellectual disability, mild hypocalcemia, muscle fatigue, asplenia, and ichthyosis. Using targeted sequencing and whole-exome sequencing, we identified the c.910C > T transition in a STIM1 allele (p.R304W) only in patients and not in their unaffected family members. STIM1 encodes stromal interaction molecule 1 protein (STIM1), which is a finely tuned endoplasmic reticulum Ca(2+) sensor. The effect of the mutation on the structure of STIM1 was investigated by molecular modeling, and its effect on function was explored by calcium imaging experiments. Results obtained from calcium imaging experiments using transfected cells together with fibroblasts from one patient are in agreement with impairment of calcium homeostasis. We show that the STIM1 p.R304W variant may affect the conformation of the inhibitory helix and unlock the inhibitory state of STIM1. The p.R304W mutation causes a gain of function effect associated with an increase in both resting Ca(2+) levels and store-operated calcium entry. Our study provides evidence that Stormorken syndrome may result from a single-gene defect, which is consistent with Mendelian-dominant inheritance.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Dislexia/genética , Ictiosis/genética , Proteínas de la Membrana/genética , Trastornos Migrañosos/genética , Miosis/genética , Proteínas de Neoplasias/genética , Mutación Puntual , Bazo/anomalías , Adolescente , Adulto , Anciano , Trastornos de las Plaquetas Sanguíneas/metabolismo , Trastornos de las Plaquetas Sanguíneas/patología , Calcio/metabolismo , Canales de Calcio/metabolismo , Niño , Preescolar , Dislexia/metabolismo , Dislexia/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Eritrocitos Anormales/metabolismo , Eritrocitos Anormales/patología , Femenino , Humanos , Ictiosis/metabolismo , Ictiosis/patología , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Miosis/metabolismo , Miosis/patología , Fatiga Muscular/genética , Fibras Musculares Esqueléticas/patología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Linaje , Estructura Secundaria de Proteína , Bazo/metabolismo , Bazo/patología , Molécula de Interacción Estromal 1
15.
Biomedicines ; 12(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39200116

RESUMEN

Store-operated Ca2+ entry (SOCE) is a ubiquitous cellular mechanism that cells use to activate extracellular Ca2+ entry when intracellular Ca2+ stores are depleted. In skeletal muscle, SOCE occurs within Ca2+ entry units (CEUs), intracellular junctions between stacks of SR membranes containing STIM1 and transverse tubules (TTs) containing ORAI1. Gain-of-function mutations in STIM1 and ORAI1 are linked to tubular aggregate (TA) myopathy, a disease characterized by the atypical accumulation of tubes of SR origin. Moreover, SOCE and TAs are increased in the muscles of aged male mice. Here, we assessed the longitudinal effects (from 4-6 months to 10-14 months of age) of constitutive, muscle-specific Orai1 knockout (cOrai1 KO) on skeletal muscle structure, function, and the assembly of TAs and CEUs. The results from these studies indicate that cOrai1 KO mice exhibit a shorter lifespan, reduced body weight, exercise intolerance, decreased muscle-specific force and rate of force production, and an increased number of structurally damaged mitochondria. In addition, electron microscopy analyses revealed (i) the absence of TAs with increasing age and (ii) an increased number of SR stacks without adjacent TTs (i.e., incomplete CEUs) in cOrai1 KO mice. The absence of TAs is consistent with TAs being formed as a result of excessive ORAI1-dependent Ca2+ entry.

16.
Cell Calcium ; 123: 102926, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38959763

RESUMEN

Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.

17.
Genome Med ; 16(1): 87, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982518

RESUMEN

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Fenotipo , Humanos , Masculino , Femenino , Predisposición Genética a la Enfermedad , Mutación , Exoma/genética , Linaje , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/congénito , Niño , Adulto
18.
Biomolecules ; 13(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136565

RESUMEN

Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.


Asunto(s)
Calsecuestrina , Taquicardia Ventricular , Humanos , Calsecuestrina/genética , Calsecuestrina/metabolismo , Corazón , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Retículo Sarcoplasmático/metabolismo , Mutación Missense , Calcio/metabolismo
19.
FASEB Bioadv ; 5(11): 453-469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37936920

RESUMEN

Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.

20.
Med Int (Lond) ; 2(5): 29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698909

RESUMEN

The aim of the present case study was to identify the genetic cause of a patient with a clinical presentation of tubular aggregate myopathy (TAM)/Stormorken syndrome (STRMK) and review the published clinical data of patients with TAM/STRMK. A child with thrombocytopenia and hyperCKemia at the Children's Hospital of Soochow University were recruited in the study. Peripheral blood samples of the infant and her parents were collected, and then whole-exome sequencing was performed. Detection of the stromal interaction molecule 1 (STIM1) level of the child was performed using western blot analysis. In addition, a literature review was performed based on a thorough retrieval of published literature from the PubMed database, as well as domestic databases. In the present study, the c.326A>G mutation in a STIM1 allele (p.H109R) was identified only in the child, as opposed to the unaffected parents. The level of STIM1 was not decreased in the child. Among the mutation sites identified in previous studies, there were 46 cases across 30 families of STIM1 EF-hand mutations, 21 cases across 14 families of STIM1 CC1 mutations and 20 cases across 8 families of calcium release-activated calcium channel protein 1 mutations, in which 7 parents had the same mutation site as the patient described herein. On the whole, it is demonstrated that TAM/STRMK is an extremely rare disease with autosomal dominant inheritance. Patients often have multisystemic signs. Gene detection at an early stage is helpful for diagnosis. Long-term exercise training may also have a certain curative effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA