Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(6): e18186, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445803

RESUMEN

Clear cell renal cell carcinoma (ccRCC) represents a significant challenge in oncology, primarily due to its resistance to conventional therapies. Understanding the tumour microenvironment (TME) is crucial for developing new treatment strategies. This study focuses on the role of amyloid precursor protein (APP) in tumour-associated macrophages (TAMs) within the ccRCC TME, exploring its potential as a prognostic biomarker. Basing TAM-related genes, the prognostic model was important to constructed. Employing advanced single-cell transcriptomic analysis, this research dissects the TME of ccRCC at an unprecedented cellular resolution. By isolating and examining the gene expression profiles of individual cells, particularly focusing on TAMs, the study investigates the expression levels of APP and their association with the clinical outcomes of ccRCC patients. The analysis reveals a significant correlation between the expression of APP in TAMs and patient prognosis in ccRCC. Patients with higher APP expression in TAMs showed differing clinical outcomes compared to those with lower expression. This finding suggests that APP could serve as a novel prognostic biomarker for ccRCC, providing insights into the disease progression and potential therapeutic targets. This study underscores the importance of single-cell transcriptomics in understanding the complex dynamics of the TME in ccRCC. The correlation between APP expression in TAMs and patient prognosis highlights APP as a potential prognostic biomarker. However, further research is needed to validate these findings and explore the regulatory mechanisms and therapeutic implications of APP in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Precursor de Proteína beta-Amiloide , Biomarcadores , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica , Neoplasias Renales/genética , Microambiente Tumoral/genética
2.
J Cell Mol Med ; 28(3): e18108, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38279519

RESUMEN

Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck with rising global incidence. Despite advances in treatment modalities, OSCC prognosis remains diverse due to the complex molecular and cellular heterogeneity within tumours, as well as the heterogeneity in tumour microenvironment (TME). In this study, we utilized single-cell RNA sequencing (scRNA-seq) analysis to explore distinct subpopulations of tumour cells in OSCC tissues and their interaction with components in TME. We identified four major tumour cell subpopulations (C0, C1, C2 and C3) with unique molecular characteristics and functional features. Pathway enrichment analysis revealed that C0 primarily expressed genes involved in extracellular matrix interactions and C1 showed higher proliferation levels, suggesting that the two cell subpopulations exhibited tumour aggressiveness. Conversely, C2 and C3 displayed features associated with keratinization and cornified envelope formation. Accordingly, C0 and C1 subpopulations were associated with shorter overall and disease-free survival times, while C2 and C3 were weakly correlated with longer survival. Genomic analysis showed that C1 demonstrated a positive correlation with tumour mutation burden. Furthermore, C0 exhibited resistant to cisplatin treatment, while C1 showed more sensitive to cisplatin treatment, indicating that C0 might exhibit more aggressive compared to C1. Additionally, C0 had a higher level of communication with fibroblasts and endothelial cells in TME via integrin-MAPK signalling, suggesting that the function of C0 was maintained by that pathway. In summary, this study provided critical insights into the molecular and cellular heterogeneity of OSCC, with potential implications for prognosis prediction and personalized therapeutic approaches.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Cisplatino , Células Endoteliales , Transcriptoma , Microambiente Tumoral
3.
Immunology ; 172(4): 547-565, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38566448

RESUMEN

Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.


Asunto(s)
Ferroptosis , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Animales , Microambiente Tumoral/inmunología , Especies Reactivas de Oxígeno/metabolismo , Vacunas contra el Cáncer/inmunología , Virus Oncolíticos/inmunología , Viroterapia Oncolítica/métodos
4.
Australas J Dermatol ; 65(2): 143-152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38156714

RESUMEN

The propensity to metastasize is the most important prognostic indicator for solid cancers. New insights into the mechanisms of early carcinogenesis have revealed micrometastases are generated far earlier than previously thought. Evidence supports a synergistic relationship between vascular and lymphatic seeding which can occur before there is clinical evidence of a primary tumour. Early vascular seeding prepares distal sites for colonisation while regional lymphatics are co-opted to promote facilitative cancer cell mutations. In response, the host mounts a global inflammatory and immunomodulatory response towards these cells supporting the concept that cancer is a systemic disease. Cancer staging systems should be refined to better reflect cancer cell loads in various tissue compartments while clinical perspectives should be broadened to encompass this view when approaching high-risk cancers. Measured adjunctive therapies implemented earlier for low-volume, in-transit cancer offers the prospect of preventing advanced disease and the need for heroic therapeutic interventions. This review seeks to re-appraise how we view the metastatic process for solid cancers. It will explore in-transit metastasis in the context of high-risk skin cancer and how it dictates disease progression. It will also discuss how these implications will influence our current staging systems and its consequences on management.


Asunto(s)
Micrometástasis de Neoplasia , Neoplasias Cutáneas , Humanos , Metástasis Linfática , Micrometástasis de Neoplasia/patología , Neoplasias Cutáneas/patología , Pronóstico , Piel/patología , Biopsia del Ganglio Linfático Centinela , Estadificación de Neoplasias
5.
Mol Cancer ; 22(1): 119, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516825

RESUMEN

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Asunto(s)
Carcinogénesis , Neoplasias de la Próstata , Masculino , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias de la Próstata/genética , Transcripción Genética , Procesamiento Postranscripcional del ARN , Metiltransferasas/genética
6.
Cancer Immunol Immunother ; 71(1): 121-136, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34028567

RESUMEN

Liver cancer accounts for 6% of all malignancies causing death worldwide, and hepatocellular carcinoma (HCC) is the most common histological type. HCC is a heterogeneous cancer, but how the tumour microenvironment (TME) of HCC contributes to the progression of HCC remains unclear. In this study, we investigated the immune microenvironment by multiomics analysis. The tumour immune infiltration characteristics of HCC were determined at the genomic, epigenetic, bulk transcriptome and single-cell levels by data from The Cancer Genome Atlas portal and the Gene Expression Omnibus (GEO). An epigenetic immune-related scoring system (EIRS) was developed to stratify patients with poor prognosis. SPP1, one gene in the EIRS system, was identified as an immune-related predictor of poor survival in HCC patients. Through receptor-ligand pair analysis in single-cell RNA-seq, SPP1 was indicated to mediate the crosstalk between HCC cells and macrophages via SPP1-CD44 and SPP1-PTGER4 association. In vitro experiments further validate SPP1 can trigger the polarization of macrophages to M2-phenotype tumour-associated macrophages (TAMs).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Osteopontina/metabolismo , Microambiente Tumoral , Adulto , Anciano , Algoritmos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Técnicas de Cocultivo , Metilación de ADN , Supervivencia sin Enfermedad , Femenino , Genoma Humano , Células Hep G2 , Humanos , Sistema Inmunológico , Inmunoterapia , Ligandos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Fenotipo , Pronóstico , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento
7.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806034

RESUMEN

Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Neoplasias/terapia , Linfocitos T
8.
Adv Exp Med Biol ; 1329: 351-397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664248

RESUMEN

Migration Stimulating Factor (MSF) is a 70 kDa truncated isoform of fibronectin (FN); its mRNA is generated from the FN gene by an unusual two-stage processing. Unlike full-length FN, MSF is not a matrix molecule but a soluble protein which displays cytokine-like activities not displayed by any other FN isoform due to steric hindrance. There are two isoforms of MSF; these are referred to as MSF+aa and MSF-aa, while the term MSF is used to include both.MSF was first identified as a motogen secreted by foetal and cancer-associated fibroblasts in tissue culture. It is also produced by sprouting (angiogenic) endothelial cells, tumour cells and activated macrophages. Keratinocytes and resting endothelial cells secrete inhibitors of MSF that have been identified as NGAL and IGFBP-7, respectively. MSF+aa and MSF-aa show distinct functionality in that only MSF+aa is inhibited by NGAL.MSF is present in 70-80% of all tumours examined, expressed by the tumour cells as well as by fibroblasts, endothelial cells and macrophages in the tumour microenvironment (TME). High MSF expression is associated with tumour progression and poor prognosis in all tumours examined, including breast carcinomas, non-small cell lung cancer (NSCLC), salivary gland tumours (SGT) and oral squamous cell carcinomas (OSCC). Epithelial and stromal MSF carry independent prognostic value. MSF is also expressed systemically in cancer patients, being detected in serum and produced by fibroblast from distal uninvolved skin. MSF-aa is the main isoform associated with cancer, whereas MSF+aa may be expressed by both normal and malignant tissues.The expression of MSF is not invariant; it may be switched on and off in a reversible manner, which requires precise interactions between soluble factors present in the TME and the extracellular matrix in contact with the cells. MSF expression in fibroblasts may be switched on by a transient exposure to several molecules, including TGFß1 and MSF itself, indicating an auto-inductive capacity.Acting by both paracrine and autocrine mechanisms, MSF stimulates cell migration/invasion, induces angiogenesis and cell differentiation and alters the matrix and cellular composition of the TME. MSF is also a survival factor for sprouting endothelial cells. IGD tri- and tetra-peptides mimic the motogenic and angiogenic activities of MSF, with both molecules inhibiting AKT activity and requiring αvß3 functionality. MSF is active at unprecedently low concentrations in a manner which is target cell specific. Thus, different bioactive motifs and extracellular matrix requirements apply to fibroblasts, endothelial cells and tumour cells. Unlike other motogenic and angiogenic factors, MSF does not affect cell proliferation but it stimulates tumour growth through its angiogenic effect and downstream mechanisms.The epithelial-stromal pattern of expression and range of bioactivities displayed puts MSF in the unique position of potentially promoting tumour progression from both the "seed" and the "soil" perspectives.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Citocinas , Células Endoteliales , Humanos , Microambiente Tumoral
9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830392

RESUMEN

Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Antígenos/uso terapéutico , Inmunoterapia , Neoplasias/terapia , Antígenos/inmunología , Humanos , Nanoestructuras/uso terapéutico , Neoplasias/inmunología , Polímeros/uso terapéutico
10.
Adv Exp Med Biol ; 1263: 117-143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32588326

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy has dramatically revolutionised cancer treatment. The FDA approval of two CAR-T cell products for otherwise incurable refractory B-cell acute lymphoblastic leukaemia (B-ALL) and aggressive B-cell non-Hodgkin lymphoma has established this treatment as an effective immunotherapy option. The race for extending CAR-T therapy for various tumours is well and truly underway. However, response rates in solid organ cancers have been inadequate thus far, partly due to challenges posed by the tumour microenvironment (TME). The TME is a complex structure whose role is to subserve the persistence and proliferation of tumours as well as support their escape from immune surveillance. It presents several obstacles like inhibitory immune checkpoint proteins, immunosuppressive cells, cytokines, chemokines, stromal factors and adverse metabolic pathways. CAR structure and CAR-T therapies have evolved to overcome these obstacles, and we now have several novel CARs with improved anti-tumour activity demonstrated in xenograft models and in some clinical trials. This chapter provides a discussion of the evolution of CAR-T therapies to enable targeting specific aspects of the TME.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Linfocitos T/inmunología
11.
J Cancer Res Clin Oncol ; 150(6): 311, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896142

RESUMEN

BACKGROUND: Metabolic reprogramming is an emerging hallmark that influences the tumour microenvironment (TME) by regulating the behavior of cancer cells and immune cells. The relationship between metabolism and immunity remains elusive. The purpose of this study was to explore the predictive value of immune- and metabolism-related genes in hepatocellular carcinoma (HCC) and their intricate interplay with TME. METHODS: We established the immune- and metabolism-related signature (IMRPS) based on the LIHC cohort from The Cancer Genome Atlas (TCGA) dataset. Kaplan-Meier analysis, receiver operating characteristic (ROC) curve analysis and Cox regression analysis confirmed the prognostic value of IMRPS. We investigated differences in immune cell infiltration, clinical features, and therapeutic response between risk groups. The quantitative real-time PCR (qPCR) was used to confirm the expression of signature genes. Immunohistochemical staining was performed to evaluate immune infiltration features in HCC tissue samples. We conducted cell experiments including gene knockout, cell counting kit-8 (CCK-8), and flow cytometry to explore the role of the IMRPS key gene UCK2 in HCC. RNA-seq was used to further investigate the potential underlying mechanism involved. RESULTS: The IMRPS, composed of four genes, SMS, UCK2, PFKFB4 and MAPT, exhibited significant correlations with survival, immune cell infiltration, clinical features, immune checkpoints and therapeutic response. The IMRPS was shown to be an excellent predictor of HCC prognosis. It could stratify patients appropriately and characterize the TME accurately. The high-risk HCC group exhibited an immunosuppressive microenvironment with abundant M2-like macrophage infiltration, which was confirmed by the immunohistochemistry results. The results of qPCR revealed that the expression of signature genes in 20 HCC tissues was significantly greater than that in adjacent normal tissues. After the key gene UCK2 was knocked out, the proliferation of the Huh7 cell line was significantly inhibited, and monocyte-derived macrophages polarized towards an M1-like phenotype in the coculture system. RNA-seq and GSEA suggested that the phenotypes were closely related to the negative regulation of growth and regulation of macrophage chemotaxis. CONCLUSIONS: This study established a new IMRS for the accurate prediction of patient prognosis and the TME, which is also helpful for identifying new targets for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Persona de Mediana Edad , Perfilación de la Expresión Génica , Transcriptoma
12.
Ups J Med Sci ; 1292024.
Artículo en Inglés | MEDLINE | ID: mdl-38863724

RESUMEN

Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. Cancer-associated fibroblasts have several ways by which they can affect the tumour's immune microenvironment (TIME). For example, their interactions with macrophages and dendritic cells (DCs) create an immunosuppressive milieu that can indirectly affect T-cell anticancer immunity and enable immune evasion. In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Linfocitos T , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Microambiente Tumoral/inmunología , Linfocitos T/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Matriz Extracelular/metabolismo , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo
13.
Transl Cancer Res ; 13(5): 2222-2237, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881911

RESUMEN

Background: The adenylyl cyclase (ADCY) gene family encodes enzymes responsible for the synthesis of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP), which comprises nine transmembrane isoforms (ADCYs 1-9). Although ADCYs correlate with intracellular signalling and tumorigenesis in different malignancies, their roles in bladder cancer remain unclear. Methods: Utilizing the bladder urothelial carcinoma (BLCA) dataset from The Cancer Genome Atlas (TCGA), we employed the R package 'limma' to identify differential genes. Subsequent correlation analysis with corresponding clinical data was conducted. Prognostic significance of ADCY family genes was assessed through survival analysis. Univariate and multivariate Cox regression determined ADCY2 as a potential independent risk factor for BLCA. Validation was performed using immunohistochemistry results from independent cohorts. Additionally, we delved into the mechanism of genetic variations, methylation modifications, and signalling pathways of ADCY family genes. Evaluation of their role in the immune microenvironment was achieved through R packages single-sample gene set enrichment analysis (ssGSEA), CIBERPORT, and ESTIMATE. Results: Cases of bladder cancer were retrieved from TCGA, and the transcriptionally differentially expressed members of ADCY were identified (members 2, 4, and 5). Genomic alteration, epigenomic modification, clinicopathological characteristics and clinical survival were systematically investigated. A co-expression network was established based on the intersection of correlated genes, which was centred around ADCY2, ADCY4, and ADCY5. Enrichment analysis revealed that correlated genes were involved in epithelial-mesenchymal transition (EMT). The ADCY2 was selected as the most representative biomarker for prognosis in bladder cancer. Bladder tumour with higher ADCY2 expression had higher prognostic risk and worse survival outcomes. Moreover, ADCY2 was correlated with classic immune checkpoints, and a better responsiveness to immunotherapy was exhibited in high-expression subsets. To ameliorate universality of the conclusion, our study also included several real-world cohorts into the preliminary validation, using datasets from the Gene Expression Omnibus (GEO; GSE13507), tissue microarray (TMA) with 80 bladder cancer inclusion and clinical trial IMvigor210, which were associated with immunotherapy sensitivity, prognosis, and common biomarker presentation. Conclusions: Our study reveals that ADCY family has prognostic value in patients with bladder cancer; the ADCY2 is a prominent prognostic biomarker. The bioinformatics analyses and validation provide direction for further functional and mechanistic studies on the screened members of ADCY family.

14.
Br J Pharmacol ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394867

RESUMEN

Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1ß and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1ß and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.

15.
J Cancer ; 15(12): 4020-4039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911387

RESUMEN

Background: Matrix metalloproteinases (MMPs) are involved in many processes of tumour progression and invasion. However, few studies have analysed the effects of MMP expression patterns on endometrial cancer (EC) development from the perspective of the tumour microenvironment (TME). we quantified MMP expression in individual by constructing an MMP score and found MMP score effectively predict the prognosis of EC patients. Methods: MMPs expression profiles were determined based on the differential expression of 12 MMP-related regulators. Principal component analysis (PCA) was used to construct an MMP scoring system which can quantify the MMPs expression patterns individually of EC patients. Kaplan-Meier analysis, the log-rank test, and time-dependent receiver operating characteristic (ROC) curve analysis were used to evaluate the value of MMPs expression in predicting prognosis. Single-cell RNA sequencing (scRNA-seq) dataset was used to verify correlation between MMPs and progression of EC. Gene Ontology (GO) analysis was used to investigate the pathways and functions underlying MMPs expression. Tumour immune dysfunction, exclusion prediction, and pharmacotherapy response analyses were performed to assess the potential response to pharmacotherapy based on MMPs patterns. Results: We downloaded the MMPs expression data, somatic mutation data and corresponding clinical information of EC patients from the TCGA website and ICGC portal. Based on the MMP-related differentially expressed genes (DEGs), the MMP score was constructed, and EC patients were divided into high and low MMP score groups. There was a positive correlation between MMP score and prognosis of EC patients. Patients with high MMP scores had better prognosis, more abundant immune cell infiltration and stronger antitumoor immunity. Although prognosis is worse with the lower group than the high, patients with low MMP score had better response to immunotherapy, which means they could prolong the survival time through Immunological checkpoint blockade (ICB) therapy. scRNA-seq analysis identified significant heterogeneity between MMP score and classical pathways in EC. Conclusion: Our work indicates that the MMP score could be a potential tool to evaluate MMP expression patterns, immune cell infiltration, response to pharmacotherapy, clinicopathological features, and survival outcomes in EC. This will provide the more effective guide to select immunotherapeutic strategies of EC in the future.

16.
Clin Transl Med ; 14(7): e1761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997802

RESUMEN

BACKGROUND AND MAIN BODY: The anti-tumour and tumour-promoting roles of B cells in the tumour microenvironment (TME) have gained considerable attention in recent years. As essential orchestrators of humoral immunity, B cells potentially play a crucial role in anti-tumour therapies. Chemotherapy, a mainstay in cancer treatment, influences the proliferation and function of diverse B-cell subsets and their crosstalk with the TME. Modulating B-cell function by targeting B cells or their associated cells may enhance chemotherapy efficacy, presenting a promising avenue for future targeted therapy investigations. CONCLUSION: This review explores the intricate interplay between chemotherapy and B cells, underscoring the pivotal role of B cells in chemotherapy treatment. We summarise promising B-cell-related therapeutic targets, illustrating the immense potential of B cells in anti-tumour therapy. Our work lays a theoretical foundation for harnessing B cells in chemotherapy and combination strategies for cancer treatment. KEY POINTS: Chemotherapy can inhibit B-cell proliferation and alter subset distributions and functions, including factor secretion, receptor signalling, and costimulation. Chemotherapy can modulate complex B-cell-T-cell interactions with variable effects on anti-tumour immunity. Targeting B-cell surface markers or signalling improves chemotherapy responses, blocks immune evasion and inhibits tumour growth. Critical knowledge gaps remain regarding B-cell interactions in TME, B-cell chemoresistance mechanisms, TLS biology, heterogeneity, spatial distributions, chemotherapy drug selection and B-cell targets that future studies should address.


Asunto(s)
Linfocitos B , Neoplasias , Humanos , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
17.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920685

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells. Understanding of the TME can provide new therapeutic options for patients with DLBCL and improve their prognosis and overall survival. This review provides essentials of the latest understanding of tumour microenvironment elements and discusses their role in tumour progression and immune suppression mechanisms which result in poor prognosis for patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and highlight novel therapeutic targets.


Asunto(s)
Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/inmunología , Animales , Células Supresoras de Origen Mieloide/patología , Células Supresoras de Origen Mieloide/inmunología
18.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490958

RESUMEN

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Asunto(s)
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Ascitis/metabolismo , Ascitis/patología , Microambiente Tumoral , Proteómica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ováricas/diagnóstico
19.
Semin Immunopathol ; 45(2): 203-214, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36480035

RESUMEN

Tumour cells do not exist as isolated entities. Instead, they are surrounded by a variety of cells and extracellular matrix, which form the tumour microenvironment (TME). The interaction between cancer cells and their microenvironment is increasingly acknowledged as essential in dictating the outcome of the patients. The TME includes everything that surrounds tumour cells and is often highjacked by the latter to promote their growth, invasion, and immune escape. Immune cells and cancer-associated fibroblasts (CAFs) are essential components of the TME, and there is increasing evidence that their interaction constitutes a major player not only for tumour progression but also for therapy response.Recent work in the field of immuno-oncology resulted in the development of novel therapies that aim at activating immune cells against cancer cells to eliminate them. Despite their unprecedented success, the lack of response from a large portion of patients highlights the need for further progress and improvement. To achieve its ultimate goal, the interaction between cancer cells and the TME needs to be studied in-depth to allow the targeting of mechanisms that are involved in resistance or refractoriness to therapy. Moreover, predictive and prognostic biomarkers for patient stratification are still missing. In this review, we focus on and highlight the complexity of CAFs within the TME and how their interaction, particularly with immune cells, can contribute to treatment failure. We further discuss how this crosstalk can be further dissected and which strategies are currently used to target them.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Neoplasias/etiología , Neoplasias/terapia , Fibroblastos Asociados al Cáncer/patología , Fibroblastos , Inmunoterapia , Microambiente Tumoral
20.
Semin Immunopathol ; 45(2): 163-186, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36161514

RESUMEN

Tumour microenvironment is a complex ecosystem in which myeloid cells are the most abundant immune elements. This cell compartment is composed by different cell types, including neutrophils, macrophages, dendritic cells, and monocytes but also unexpected cell populations with immunosuppressive and pro-tumour roles. Indeed, the release of tumour-derived factors influences physiological haematopoiesis producing unconventional cells with immunosuppressive and tolerogenic functions such as myeloid-derived suppressor cells. These pro-tumour myeloid cell populations not only support immune escape directly but also assist tumour invasion trough non-immunological activities. It is therefore not surprising that these cell subsets considerably impact in tumour progression and cancer therapy resistance, including immunotherapy, and are being investigated as potential targets for developing a new era of cancer therapy. In this review, we discuss emerging strategies able to modulate the functional activity of these tumour-supporting myeloid cells subverting their accumulation, recruitment, survival, and functions. These innovative approaches will help develop innovative, or improve existing, cancer treatments.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Ecosistema , Células Mieloides , Inmunoterapia , Macrófagos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA