Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517127

RESUMEN

Optical sensors based on guided mode resonance (GMR) realized in polymers are promising candidates for sensitive and cost effective strain sensors. The benefit of GMR grating sensors is the non-contact, easy optical read-out with large working distance, avoiding costly alignment and packaging procedures. The GMR gratings with resonance around 850-900 nm are fabricated using electron beam lithography and replicated using a soft stamp based imprinting technique on 175 µ m-thick foils to make them suitable for optical strain sensing. For the strain measurements, foils are realized with both GMR gratings and waveguides with Bragg gratings. The latter are used as reference sensors and allow extracting the absolute strain sensitivity of the GMR sensor foils. Following this method, it is shown that GMR gratings have an absolute strain sensitivity of 1.02 ± 0.05 p m / µ ϵ at 870 nm.

2.
Nanomaterials (Basel) ; 10(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019541

RESUMEN

Ultraviolet nanoimprint lithography (UV-NIL) requires high durability of the mold for the mass production of nanostructures. To evaluate the durability of a line-patterned replica mold made of high-hardness UV curable resin, repetitive transfer and contact angle measurements of the replica mold were carried out. In the line patterns, as the contact angle decreases due to repeated transfer, capillary action occurs, and water flows along them. Therefore, it can be said that a mold with a line pattern exhibits an anisotropic contact angle because these values vary depending on the direction of the contact angle measurement. Subsequently, these anisotropic characteristics were investigated. It was determined that it was possible to predict the lifetime of line-and-space molds over repeated transfers. As the transcription was repeated, the contact angle along the line patterns decreased significantly before becoming constant. Moreover, the contact angle across the line pattern decreased slowly while maintaining a high contact angle with respect to the contact angle along the line pattern. The contact angle then decreased linearly from approximately 90°. The mold was found to be macroscopically defect when the values of the contact angle along the line pattern and the contact angle across the line pattern were close. Predicting the mold's lifetime could potentially lead to a shortened durability evaluation time and the avoidance of pattern defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA