Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(4): 775-785.e8, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902668

RESUMEN

MicroRNAs (miRNAs) specify the recruitment of deadenylases to mRNA targets. Despite this recruitment, we find that miRNAs have almost no effect on steady-state poly(A)-tail lengths of their targets in mouse fibroblasts, which motivates the acquisition of pre-steady-state measurements of the effects of miRNAs on tail lengths, mRNA levels, and translational efficiencies. Effects on translational efficiency are minimal compared to effects on mRNA levels, even for newly transcribed target mRNAs. Effects on target mRNA levels accumulate as the mRNA population approaches steady state, whereas effects on tail lengths peak for recently transcribed target mRNAs and then subside. Computational modeling of this phenomenon reveals that miRNAs cause not only accelerated deadenylation of their targets but also accelerated decay of short-tailed target molecules. This unanticipated effect of miRNAs largely prevents short-tailed target mRNAs from accumulating despite accelerated target deadenylation. The net result is a nearly imperceptible change to the steady-state tail-length distribution of targeted mRNAs.


Asunto(s)
MicroARNs/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Células 3T3 , Animales , Ratones , Biosíntesis de Proteínas , ARN Mensajero/química
2.
Mol Cell ; 77(4): 786-799.e10, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902669

RESUMEN

For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad (1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through deadenylation-linked mechanisms, with little contribution from either endonucleolytic cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary broadly (1000-fold) and are larger for short-tailed mRNAs that have previously undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated mRNAs, enabling the large range in deadenylation rate constants to impart a similarly large range in stabilities.


Asunto(s)
Citoplasma/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Células 3T3 , Animales , Citoplasma/genética , Ratones , Isoformas de ARN/metabolismo , ARN Mensajero/química
3.
RNA ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048310

RESUMEN

Splicing, a process of intron removal from eukaryotic RNA transcripts, is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency giving rise to alternative splicing products. At the same time, splice sites might be utilised at a variable rate. We used 5-ethynyl uridine labelling to sequence a nascent transcriptome of HeLa cells and deduce the rate of splicing for each donor and acceptor splice site. The following correlation analysis allowed us to assess a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as splicing rate decrease with a decreased complementarity of donor splice site to U1 and acceptor sites to U2 snRNAs, or an acceleration of donor site usage if an upstream acceptor site is located at a shorter distance. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of acceptor splicing site utilization, or the differences in splicing rate between long, short and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the polyA site, which might be explained by a cooperativity of the splicing and polyadenylation. In addition, we performed the analysis of splicing kinetics of SF3B4 knockdown cells which suggested the impairment of U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field as it provides general splicing rate dependencies as well as helps justify the existence of slowly removed splice sites, e.g. to ensure alternative splicing.

4.
J Biol Chem ; 300(6): 107340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705390

RESUMEN

Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.


Asunto(s)
Factor de Transcripción Activador 4 , Animales Recién Nacidos , Bilirrubina , Glucuronosiltransferasa , Hígado , PPAR alfa , Triclosán , Animales , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Triclosán/farmacología , Humanos , Bilirrubina/farmacología , Bilirrubina/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Noqueados , Femenino , Receptor de Androstano Constitutivo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
5.
FASEB J ; 38(1): e23397, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149908

RESUMEN

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Asunto(s)
Parásitos , Toxoplasma , Animales , Ratones , Dihidroorotasa , Pirimidinas/farmacología , Uracilo , Uridina Monofosfato , Mamíferos
6.
Arterioscler Thromb Vasc Biol ; 44(8): 1764-1783, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934117

RESUMEN

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.


Asunto(s)
Modelos Animales de Enfermedad , Glucólisis , Miembro Posterior , Isquemia , Músculo Esquelético , Neovascularización Fisiológica , Fosfofructoquinasa-2 , Flujo Sanguíneo Regional , Animales , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Isquemia/metabolismo , Isquemia/genética , Isquemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Masculino , Ratones Endogámicos C57BL , Humanos , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/fisiopatología , Transducción de Señal , Glucógeno/metabolismo , Recuperación de la Función , Células Endoteliales/metabolismo , Células Endoteliales/enzimología , Ratones , Hipoxia de la Célula , Células Cultivadas
7.
Mol Cell ; 65(1): 39-51, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28061332

RESUMEN

Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Salmonella enterica/enzimología , Regiones no Traducidas 3' , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Biología Computacional , Bases de Datos Genéticas , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Salmonella enterica/genética , Relación Estructura-Actividad , Transcriptoma , Uridina/metabolismo
8.
J Biol Chem ; 299(3): 103002, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773803

RESUMEN

Plasma thymidine levels in rodents are higher than in other mammals including humans, possibly due to a different pattern and lower level of thymidine phosphorylase expression. Here, we generated a novel knock-in (KI) mouse line with high systemic expression of human thymidine phosphorylase to investigate this difference in nucleotide metabolism in rodents. The KI mice showed growth retardation around weaning and died by 4 weeks of age with a decrease in plasma thymidine level compared with the litter-control WT mice. These phenotypes were completely or partially rescued by administration of the thymidine phosphorylase inhibitor 5-chloro-6-(2-iminopyrrolidin-1-yl) methyl-2,4(1H,3H)-pyrimidinedione hydrochloride or thymidine, respectively. Interestingly, when thymidine phosphorylase inhibitor administration was discontinued in adult animals, KI mice showed deteriorated grip strength and locomotor activity, decreased bodyweight, and subsequent hind-limb paralysis. Upon histological analyses, we observed axonal degeneration in the spinal cord, muscular atrophy with morphologically abnormal mitochondria in quadriceps, retinal degeneration, and abnormality in the exocrine pancreas. Moreover, we detected mitochondrial DNA depletion in multiple tissues of KI mice. These results indicate that the KI mouse represents a new animal model for mitochondrial diseases and should be applicable for the study of differences in nucleotide metabolism between humans and mice.


Asunto(s)
Encefalomiopatías Mitocondriales , Miopatías Mitocondriales , Animales , Humanos , Ratones , ADN Mitocondrial/metabolismo , Trastornos del Crecimiento/genética , Mamíferos/metabolismo , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Nucleótidos , Timidina , Timidina Fosforilasa/genética , Timidina Fosforilasa/metabolismo
9.
J Biol Chem ; 299(3): 102955, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720308

RESUMEN

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Asunto(s)
Arsénico , Glucuronosiltransferasa , Factor 2 Relacionado con NF-E2 , Receptor X de Pregnano , Animales , Ratones , Animales Recién Nacidos , Arsénico/toxicidad , Bilirrubina/sangre , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Hígado/enzimología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo
10.
Clin Immunol ; 265: 110300, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950722

RESUMEN

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.


Asunto(s)
Células Dendríticas , Melanocitos , Nevo con Halo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Melanocitos/metabolismo , Melanocitos/inmunología , Nevo con Halo/metabolismo , Nevo con Halo/inmunología , Uridina Difosfato Glucosa/metabolismo , Vitíligo/inmunología , Vitíligo/metabolismo , Masculino , Femenino , Adulto , Apoptosis , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto Joven , Adolescente
11.
Chembiochem ; 25(4): e202300656, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38180305

RESUMEN

Cytidine and uridine are two essential pyrimidine ribonucleotides, and accurate detection of these nucleosides holds significant biological importance. While many aptamers were reported to bind purines, little success was achieved for pyrimidine binding. This study employs the library-immobilization capture-SELEX technique to isolate aptamers capable of selectively binding to cytidine and uridine. First, a selection was performed using a mixture of cytidine and uridine as the target. This selection led to the isolation of a highly selective aptamer for cytidine with a dissociation constant (Kd ) of 0.9 µM as determined by isothermal titration calorimetry (ITC). In addition, a dual-recognition aptamer was also discovered, which exhibited selective binding to both cytidine and uridine. Subsequently, a separate selection was carried out using uridine as the sole target, and the resulting uridine aptamer displayed a Kd of 4 µM based on a thioflavin T fluorescence assay and a Kd of 102 µM based on ITC. These aptamers do not have a strict requirement of metal ions for binding, and they showed excellent selectivity since no binding was observed with their nucleobases or nucleotides. This study has resulted three aptamers for pyrimidines, which can be employed in biosensors and DNA switches.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Uridina , Citidina , Técnica SELEX de Producción de Aptámeros/métodos , ADN
12.
Planta ; 259(2): 50, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285114

RESUMEN

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Asunto(s)
Saponinas , Escualeno/análogos & derivados , Triterpenos , Glicósidos , Flavonoides , Saponinas/genética , Glicosiltransferasas , Uridina Difosfato
13.
RNA ; 28(12): 1568-1581, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192131

RESUMEN

Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , ARN de Transferencia , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , ARN no Traducido/genética , Homólogo 8 de AlkB ARNt Metiltransferasa/genética
14.
Chemistry ; 30(18): e202303539, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38230625

RESUMEN

Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.


Asunto(s)
Colorantes Fluorescentes , Ácidos Nucleicos , Uridina/química , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Uracilo
15.
Mol Pharm ; 21(3): 1256-1271, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324380

RESUMEN

Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Regulación hacia Abajo , Pirimidinas , Guanidina , Morfolinos/química , Oligonucleótidos
16.
BMC Pregnancy Childbirth ; 24(1): 167, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408952

RESUMEN

BACKGROUND: The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS: A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS: There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS: The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.


Asunto(s)
Cardiopatías Congénitas , Exposición Materna , Ácidos Ftálicos , Femenino , Humanos , Exposición Materna/efectos adversos , Estudios de Casos y Controles , Espectrometría de Masas en Tándem , Estudios Prospectivos , Cardiopatías Congénitas/inducido químicamente , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
17.
BMC Pediatr ; 24(1): 160, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454370

RESUMEN

BACKGROUND: Developmental and epileptic encephalopathy-50 (DEE-50) is a rare clinical condition believed to be caused by a mutation in the CAD gene and is associated with a bleak prognosis. CAD-related diseases have a wide range of clinical manifestations and other symptoms that may be easily overlooked. Like other rare diseases, the clinical manifestations and the treatment of DEE-50 necessitate further investigation. CASE PRESENTATION: A 1-year-old male patient presented with developmental delay, seizures, and anaemia at 3 months of age. He further developed refractory status epilepticus (SE), rapid deterioration of cognitive and motor function, and even became comatose at 5 months of age. Whole-exome sequencing of trios (WES-trios) revealed a compound heterozygous variant in the CAD gene, with one locus inherited from his father (c.1252C>T: p.Q418* nonsense mutation) and one from his mother (c.6628G>A: p.G2210S, missense mutation). This compound heterozygous CAD variant was unreported in the Human Gene Mutation Database. After uridine treatment, his cognitive faculties dramatically improved and he remained seizure-free. Forty two cases with CAD gene mutation reported in the literatures were reviewed. Among them, 90% had onset before 3 years of age, with average of 1.6±1.8 years old. The average age of diagnosis was 7.7 ± 10 years. The mortality rate was approximately 9.5%, with all reported deaths occurring in patients without uridine treatment. The clinical entity could be improved dramatically when the patient treated with uridine. CONCLUSIONS: We present a boy with DEE 50 caused by novel CAD gene mutations and reviewed the clinical features of 42 patients reported previously. DEE 50 has early onset, refractory seizures, even status epilepticus leading to death, with favorable response to treatment with oral uridine. Early uridine treatment is recommended if CAD defect is suspected or genetically diagnosed. This study enhances the knowledge of DEE 50 and expands the spectrum of CAD gene mutations.


Asunto(s)
Encefalopatías , Estado Epiléptico , Humanos , Lactante , Masculino , Mutación , Convulsiones , Uridina/uso terapéutico
18.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474028

RESUMEN

The uridine diphosphate glycosyltransferase (UGT) superfamily plays a key role in the metabolism of xenobiotics and metabolic wastes, which is essential for detoxifying those species. Over the last several decades, a huge effort has been put into studying human and mammalian UGT homologs, but family members in other organisms have been explored much less. Potentially, other UGT homologs can have desirable substrate specificity and biological activities that can be harnessed for detoxification in various medical settings. In this review article, we take a plant UGT homology, UGT71G1, and compare its structural and biochemical properties with the human homologs. These comparisons suggest that even though mammalian and plant UGTs are functional in different environments, they may support similar biochemical activities based on their protein structure and function. The known biological functions of these homologs are discussed so as to provide insights into the use of UGT homologs from other organisms for addressing human diseases related to UGTs.


Asunto(s)
Glicosiltransferasas , Uridina Difosfato , Animales , Humanos , Glicosiltransferasas/metabolismo , Plantas/metabolismo , Filogenia , Mamíferos/metabolismo
19.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000550

RESUMEN

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Asunto(s)
Mitocondrias , Canales de Potasio , Rotenona , Uridina , Animales , Uridina/farmacología , Uridina/metabolismo , Ratas , Canales de Potasio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Fármacos Neuroprotectores/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Ratas Wistar , Ácidos Decanoicos/farmacología , Hidroxiácidos/farmacología
20.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892176

RESUMEN

Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.


Asunto(s)
Quitosano , Grafito , Hidrogeles , Nanocompuestos , Quitosano/química , Hidrogeles/química , Nanocompuestos/química , Humanos , Grafito/química , Fibroblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Temperatura , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA