Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 467(1-2): 77-87, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866472

RESUMEN

We herein report that deletion of mTOR in dental epithelia caused defective development of multiple cell layers of the enamel organ, which culminated in tooth malformation and cystogenesis. Specifically, cells of the stellate reticulum and stratum intermedium were poorly formed, resulting in cystic changes. The pre-ameloblasts failed to elongate along the apical-basal axis and persisted vigorous expression of Sox2 and P63, which are normally downregulated during cytodifferentiation. Expression of amelogenic markers was also attenuated in mutants. Cell proliferation and cell sizes in mutants were significantly reduced over time. Importantly, we found reduced amounts and aberrant aggregations of cytoskeletal components in mutants, along with attenuated expression of cytoskeleton regulator Cdc42, whose epithelial deletion causes a similar phenotype. Moreover, disruption of actin assembly in an organ culture system affected cell proliferation and cytodifferentiation of tooth germs, supporting a causative role of mTOR-regulated cytoskeleton dynamics for the observed phenotype of mTOR mutant mice. In further support of this view, we showed that mTOR overactivation caused increased cytoskeletal component synthesis and assembly, along with accelerated cytodifferentiation in the enamel organ. Finally, we demonstrated that mTOR regulated enamel organ development principally through the mTORC1 pathway.


Asunto(s)
Citoesqueleto/metabolismo , Órgano del Esmalte/embriología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Citoesqueleto/genética , Órgano del Esmalte/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Serina-Treonina Quinasas TOR/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
2.
Ecotoxicol Environ Saf ; 210: 111876, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418158

RESUMEN

Evidence has shown that miRNAs could play a role in dental fluorosis, but there is no study has investigated the global expression miRNA profiles of fluoride-exposed enamel organ. In this study, we analysed the differentially expressed (DE) miRNAs between fluoride-treated and control enamel organ for the first time and found several candidate miRNAs and signaling pathways worthy of further research. Thirty Wistar rats were randomly distributed into three groups and exposed to drinking water with different fluoride contents for 10 weeks and during the gestation. The three groups were a control group (distilled water), medium fluoride group (75 mg/L NaF), and high fluoride group (150 mg/L NaF). On the embryonic day 19.5, the mandible was dissected for histological analysis, and the enamel organ of the mandibular first molar tooth germ was collected for miRNA sequencing (miRNA-seq) and quantitative real-time PCR analysis (qRT-PCR). Typical dental fluorosis was observed in the incisors of the prepregnant rats. In addition to the disorganized structure of enamel organ cells, 39 DE miRNAs were identified in the fluoride groups compared with the control group, and good agreement between the miRNA-seq data and qRT-PCR data was found. The functional annotation of the target genes of 39 DE miRNAs showed significant enrichment in metabolic process, cell differentiation, calcium signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway terms. This study provides a theoretical reference for an extensive understanding of the mechanism of fluorosis and potential valuable miRNAs as therapeutic targets in fluorosis.


Asunto(s)
Órgano del Esmalte/efectos de los fármacos , Fluoruros/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , MicroARNs , Animales , Embrión de Mamíferos , Órgano del Esmalte/embriología , Órgano del Esmalte/metabolismo , Femenino , Fluorosis Dental , Ratas Wistar , Transcriptoma/efectos de los fármacos
3.
Cell Tissue Res ; 358(2): 433-42, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25012520

RESUMEN

During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 (-) with Na(+). Mutation in SLC4A4 (coding for the sodium-bicarbonate cotransporter NBCe1) induces developmental defects in human and murine enamel. We have hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in wild-type dental epithelium and examined the effect of the NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice, weak to moderate immunostaining for NBCe1 with antibodies that recognized isoforms A/B/D/E and isoform C was seen in ameloblasts at the secretory stage, with no or low staining in the early maturation stage but moderate to high staining in the late maturation stage. The papillary layer showed the opposite pattern being immunostained prominently at the early maturation stage but with gradually less staining at the mid- and late maturation stages. In NBCe1 (-/-) mice, the ameloblasts were disorganized, the enamel being thin and severely hypomineralized. Enamel organs of CFTR (-/-) and AE2a,b (-/-) mice (CFTR and AE2 are believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Thus, the expression of NBCe1 in ameloblasts and the papillary layer cell depends on the developmental stage and possibly responds to pH changes.


Asunto(s)
Órgano del Esmalte/citología , Órgano del Esmalte/embriología , Simportadores de Sodio-Bicarbonato/metabolismo , Ameloblastos/citología , Ameloblastos/metabolismo , Amelogénesis , Animales , Western Blotting , Calcificación Fisiológica/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Órgano del Esmalte/diagnóstico por imagen , Órgano del Esmalte/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Incisivo/metabolismo , Mandíbula/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Simportadores de Sodio-Bicarbonato/deficiencia , Simportadores de Sodio-Bicarbonato/genética , Regulación hacia Arriba/genética , Microtomografía por Rayos X
4.
Dev Biol ; 363(1): 52-61, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22226978

RESUMEN

Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/farmacocinética , Diente Molar/metabolismo , Odontogénesis , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Órgano del Esmalte/embriología , Órgano del Esmalte/crecimiento & desarrollo , Órgano del Esmalte/metabolismo , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos ICR , Diente Molar/embriología , Diente Molar/crecimiento & desarrollo , Floretina/farmacología , Embarazo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Germen Dentario/embriología , Germen Dentario/crecimiento & desarrollo , Germen Dentario/metabolismo
5.
J Periodontal Res ; 48(2): 262-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22973989

RESUMEN

BACKGROUND AND OBJECTIVE: Some clinical cases of hypoplastic tooth root are congenital. Because the formation of Hertwig's epithelial root sheath (HERS) is an important event for root development and growth, we have considered that understanding the HERS developmental mechanism contributes to elucidate the causal factors of the disease. To find integrant factors and phenomenon for HERS development and growth, we studied the proliferation and mobility of the cervical loop (CL). MATERIAL AND METHODS: We observed the cell movement of CL by the DiI labeling and organ culture system. To examine cell proliferation, we carried out immunostaining of CL and HERS using anti-Ki67 antibody. Cell motility in CL was observed by tooth germ slice organ culture using green fluorescent protein mouse. We also examined the expression of paxillin associated with cell movement. RESULTS: Imaging using DiI labeling showed that, at the apex of CL, the epithelium elongated in tandem with the growth of outer enamel epithelium (OEE). Cell proliferation assay using Ki67 immunostaining showed that OEE divided more actively than inner enamel epithelium (IEE) at the onset of HERS formation. Live imaging suggested that mobility of the OEE and cells in the apex of CL were more active than in IEE. The expression of paxillin was observed strongly in OEE and the apex of CL. CONCLUSION: The more active growth and movement of OEE cells contributed to HERS formation after reduction of the growth of IEE. The expression pattern of paxillin was involved in the active movement of OEE and HERS. The results will contribute to understand the HERS formation mechanism and elucidate the cause of anomaly root.


Asunto(s)
Órgano del Esmalte/embriología , Odontogénesis/fisiología , Corona del Diente/embriología , Germen Dentario/embriología , Raíz del Diente/embriología , Animales , Movimiento Celular/fisiología , Proliferación Celular , Esmalte Dental/citología , Esmalte Dental/embriología , Esmalte Dental/crecimiento & desarrollo , Órgano del Esmalte/citología , Órgano del Esmalte/crecimiento & desarrollo , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Proteínas Fluorescentes Verdes , Antígeno Ki-67/análisis , Sustancias Luminiscentes , Ratones , Diente Molar/embriología , Diente Molar/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Paxillin/análisis , Corona del Diente/citología , Corona del Diente/crecimiento & desarrollo , Germen Dentario/citología , Germen Dentario/crecimiento & desarrollo , Raíz del Diente/citología , Raíz del Diente/crecimiento & desarrollo
6.
Acta Odontol Scand ; 69(6): 360-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21449687

RESUMEN

OBJECTIVE: To investigate and compare the cellular expression of non-secreted Fgf11-14 and secreted Fgf15-18 and -20 mRNAs during tooth formation. MATERIALS AND METHODS: mRNA expression was analyzed from the morphological initiation of the mouse mandibular first molar development to the onset of crown calcification using sectional in situ hybridization. RESULTS: This study found distinct, differentially regulated expression patterns for the Fgf11-13, -15-17 and -20, in particular in the epithelial-mesenchymal interface, whereas Fgf14 and 18 mRNAs were not detected. Fgf11, -15, -16, -17 and -20 were seen in the epithelium, whereas Fgf12 and -13 signals were restricted to the mesenchymal tissue component of the tooth. Fgf11 was observed in the putative epithelial signaling areas, the tertiary enamel knots and enamel free areas of the calcifying crown. Fgf15, Fgf17 and -20 were transiently colocalized in the thickened dental epithelium at E11.5. Later Fgf15 and -20 were exclusively expressed in the epithelial enamel knot signaling centers. In contrast, Fgf13 was present in the dental mesenchyme including odontoblasts cell lineage, whereas Fgf12 appeared transiently in the preodontoblasts. CONCLUSIONS: The expression of the Fgf11-13, -15, -17 and -20 in the epithelial signaling centers and/or epithelial-mesenchymal interfaces at key stages of the tooth formation suggest important functions in odontogenesis. Future analyses of the transgenic mice will help elucidate in vivo functions of the studied Fgfs during odontogenesis and whether any of the functions of the tooth expressed epithelial and mesenchymal Fgfs of different sub-families are redundant.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Diente Molar/embriología , Odontogénesis/genética , Ameloblastos/citología , Animales , Linaje de la Célula , Papila Dental/embriología , Órgano del Esmalte/embriología , Epitelio/embriología , Factores de Crecimiento de Fibroblastos/análisis , Hibridación in Situ , Mesodermo/embriología , Ratones , Odontoblastos/citología , Calcificación de Dientes/genética , Corona del Diente/embriología , Germen Dentario/embriología
7.
Biochem Biophys Res Commun ; 393(4): 883-7, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20175995

RESUMEN

Enamel formation requires rigid control of pH homeostasis during all stages of development to prevent disruptions to crystal growth. The acceleration of the generation of bicarbonate by carbonic anhydrases (CA) has been suggested as one of the pathways used by ameloblasts cells to regulate extracellular pH yet only two isozymes (CA II and CA VI) have been reported to date during enamel formation. The mammalian CA family contains 16 different isoforms of which 13 are enzymatically active. We have conducted a systematic screening by RT-PCR on the expression of all known CA isoforms in mouse enamel organ epithelium (EOE) cells dissected from new born, in secretory ameloblasts derived from 7-day-old animals, and in the LS8 ameloblast cell line. Results show that all CA isoforms are expressed by EOE/ameloblast cells in vivo. The most highly expressed are the catalytic isozymes CA II, VI, IX, and XIII, and the acatalytic CA XI isoform. Only minor differences were found in CA expression levels between 1-day EOE cells and 7-day-old secretory-stage ameloblasts, whereas LS8 cells expressed fewer CA isoforms than both of these. The broad expression of CAs by ameloblasts reported here contributes to our understanding of pH homeostasis during enamel development and demonstrates its complexity. Our results also highlight the critical role that regulation of pH plays during the development of enamel.


Asunto(s)
Ameloblastos/enzimología , Amelogénesis , Anhidrasas Carbónicas/biosíntesis , Órgano del Esmalte/enzimología , ARN Mensajero/biosíntesis , Animales , Línea Celular , Órgano del Esmalte/embriología , Isoenzimas/biosíntesis , Ratones , Ratones Endogámicos
8.
J Theor Biol ; 262(1): 58-72, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19765593

RESUMEN

A multi-scale strategy is presented for simulating organogenesis that uses a single cell response function to define the behavior of individual cells in an organ-scale simulation of a large cell population. The response function summarizes detailed information about the behavior of individual cells in a sufficiently economical way that the organ-scale model can be commensurate with the entire organ. The first application demonstrates the effects of strain stimulus on the migration of ameloblasts during enamel formation. Ameloblasts are an attractive study case because mineralization preserves a complete record of their migratory paths. The response function in this case specifies the motions of cells responding to strain stimuli that propagate through the population. The strain stimuli are related to the curvature of the surface from which the ameloblasts migrate (the dentin-enamel junction or DEJ). A single unknown rate parameter is calibrated by an independent datum from the human tooth. With no remaining adjustable parameters, the theory correctly predicts aspects of the fracture-resistant, wavy microstructure of enamel in the human molar, including wavelength variations and the rate of wave amplitude damping. At a critical value of curvature of the DEJ, a transition in the ordering of cells occurs, from invariant order over the whole population to self-assembly of the population into groups or gangs. The prediction of an ordering transition and the predicted critical curvature are consistent with gnarled enamel in the cusps of the human molar. The calibration of the model using human data also predicts waves in the mouse incisor and an ordering transition at the chimpanzee cingulum. Widespread compressive strain is predicted late in the migration for both the human molar and mouse incisor, providing a possible signal for the termination of amelogenesis.


Asunto(s)
Ameloblastos/fisiología , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Simulación por Computador , Organogénesis/fisiología , Esguinces y Distensiones/fisiopatología , Ameloblastos/citología , Amelogénesis/fisiología , Animales , Fenómenos Fisiológicos Celulares , Órgano del Esmalte/citología , Órgano del Esmalte/embriología , Órgano del Esmalte/lesiones , Órgano del Esmalte/fisiología , Análisis de Elementos Finitos/normas , Humanos , Incisivo/citología , Incisivo/fisiología , Ratones , Modelos Biológicos , Diente Molar/citología , Diente Molar/fisiología , Estimulación Física , Transducción de Señal/fisiología
9.
Eur J Oral Sci ; 118(6): 547-58, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21083615

RESUMEN

The minipig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resemble that of humans. However, little information is available on the processes of tooth development in the pig. The purpose of this study was to classify the early stages of odontogenesis in minipigs from the initiation of deciduous dentition to the late bell stage when the successional dental lamina begins to develop. To analyze the initiation of teeth anlagens and the structural changes of dental lamina, a three-dimensional (3D) analysis was performed. At the earliest stage, 3D reconstruction revealed a continuous dental lamina along the length of the jaw. Later, the dental lamina exhibited remarkable differences in depth, and the interdental lamina was shorter. The dental lamina grew into the mesenchyme in the lingual direction, and its inclined growth was underlined by asymmetrical cell proliferation. After the primary tooth germ reached the late bell stage, the dental lamina began to disintegrate and fragmentize. Some cells disappeared during the process of lamina degradation, while others remained in small islands known as epithelial pearls. The minipig can therefore, inter alia, be used as a model organism to study the fate of epithelial pearls from their initiation to their contribution to pathological structures, primarily because of the clinical significance of these epithelial rests.


Asunto(s)
Morfogénesis/fisiología , Odontogénesis/fisiología , Diente Primario/embriología , Animales , Membrana Basal/embriología , Diente Premolar/embriología , Diferenciación Celular/fisiología , Proliferación Celular , Diente Canino/embriología , Dentina/embriología , Órgano del Esmalte/embriología , Epitelio/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Incisivo/embriología , Mesodermo/embriología , Modelos Animales , Odontoblastos/citología , Antígeno Nuclear de Célula en Proliferación/análisis , Porcinos , Porcinos Enanos , Germen Dentario/embriología
10.
J Dent Res ; 97(12): 1346-1354, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29874522

RESUMEN

Cdc42, a Rho family small GTPase, regulates cytoskeleton organization, vesicle trafficking, and other cellular processes in development and homeostasis. However, Cdc42's roles in prenatal tooth development remain elusive. Here, we investigated Cdc42 functions in mouse enamel organ. Cdc42 showed highly dynamic temporospatial patterns in the developing enamel organ, with robust expression in the outer enamel epithelium, stellate reticulum (SR), and stratum intermedium layers. Strikingly, epithelium-specific Cdc42 deletion resulted in cystic lesions in the enamel organ. Cystic lesions were first noted at embryonic day 15.5 and progressively enlarged during gestation. At birth, cystic lesions occupied the bulk of the entire enamel organ, with intracystic erythrocyte accumulation. Ameloblast differentiation was retarded upon epithelial Cdc42 deletion. Apoptosis occurred in the Cdc42 mutant enamel organ prior to and synchronously with cystogenesis. Transmission electron microscopy examination showed disrupted actin assemblies, aberrant desmosomes, and significantly fewer cell junctions in the SR cells of Cdc42 mutants than littermate controls. Autophagosomes were present in the SR cells of Cdc42 mutants relative to the virtual absence of autophagosome in the SR cells of littermate controls. Epithelium-specific Cdc42 deletion attenuated Wnt/ß-catenin and Shh signaling in dental epithelium and induced aberrant Sox2 expression in the secondary enamel knot. These findings suggest that excessive cell death and disrupted cell-cell connections may be among multiple factors responsible for the observed cystic lesions in Cdc42 mutant enamel organs. Taken together, Cdc42 exerts multidimensional and pivotal roles in enamel organ development and is particularly required for cell survival and tooth morphogenesis.


Asunto(s)
Quistes/embriología , Órgano del Esmalte/embriología , Epitelio/embriología , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Ameloblastos/metabolismo , Animales , Apoptosis , Autofagosomas/metabolismo , Western Blotting , Diferenciación Celular , Proteínas del Citoesqueleto , Etiquetado Corte-Fin in Situ , Uniones Intercelulares/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
J Dent Res ; 97(12): 1355-1364, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29863959

RESUMEN

Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.


Asunto(s)
Órgano del Esmalte/metabolismo , Epitelio/metabolismo , Proteínas de Homeodominio/metabolismo , Ameloblastos/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Quistes/embriología , Quistes/metabolismo , Microanálisis por Sonda Electrónica , Órgano del Esmalte/embriología , Epitelio/embriología , Genotipo , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microtomografía por Rayos X
12.
Rev Med Brux ; 28(3): 173-6, 2007.
Artículo en Francés | MEDLINE | ID: mdl-17708473

RESUMEN

130 millions years ago, birds have diverged from other archosaurs. Except the most primitive birds of the cretaceous, they lost the property to produce teeth. Tooth development requires complex epithelialmesenchymal interactions, which imply the expression of numerous genes, which begin to be well known. Four different experiments have permitted to obtain tooth rudiments in chick embryos. The association of oral chick ectoderm with mouse molar mesenchyme, the exposition of oral chick ectoderm to BMP's and FGF's, the transposition of mouse neural crest in young chick embryos, and the use of a Talpid mutation lead to tooth anlage development in the chick embryo.


Asunto(s)
Odontogénesis/genética , Animales , Proteínas Morfogenéticas Óseas/fisiología , Embrión de Pollo , Ectodermo/fisiología , Órgano del Esmalte/embriología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Especiación Genética , Mesodermo/fisiología , Ratones , Mutación/genética , Cresta Neural/trasplante , Técnicas de Cultivo de Tejidos , Germen Dentario/embriología
13.
J Dent Res ; 96(11): 1221-1228, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28665752

RESUMEN

Tooth is made of an enamel-covered crown and a cementum-covered root. Studies on crown dentin formation have been a major focus in tooth development for several decades. Interestingly, the population prevalence for genetic short root anomaly (SRA) with no apparent defects in crown is close to 1.3%. Furthermore, people with SRA itself are predisposed to root resorption during orthodontic treatment. The discovery of the unique role of Nfic (nuclear factor I C; a transcriptional factor) in controlling root but not crown dentin formation points to a new concept: tooth crown and root have different control mechanisms. Further genetic mechanism studies have identified more key molecules (including Osterix, ß-catenin, and sonic hedgehog) that play a critical role in root formation. Extensive studies have also revealed the critical role of Hertwig's epithelial root sheath in tooth root formation. In addition, Wnt10a has recently been found to be linked to multirooted tooth furcation formation. These exciting findings not only fill the critical gaps in our understanding about tooth root formation but will aid future research regarding the identifying factors controlling tooth root size and the generation of a whole "bio-tooth" for therapeutic purposes. This review starts with human SRA and mainly focuses on recent progress on the roles of NFIC-dependent and NFIC-independent signaling pathways in tooth root formation. Finally, this review includes a list of the various Cre transgenic mouse lines used to achieve tooth root formation-related gene deletion or overexpression, as well as strengths and limitations of each line.


Asunto(s)
Odontogénesis/fisiología , Transducción de Señal , Raíz del Diente/embriología , Animales , Cemento Dental/embriología , Dentina/embriología , Órgano del Esmalte/embriología , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Odontogénesis/genética , Factor de Transcripción Sp7 , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
J Endod ; 32(1): 1-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16410059

RESUMEN

Dens evaginatus (DE) is an uncommon dental anomaly, having been well documented since 1925. It occurs primarily in people of Asian descent and is exhibited by protrusion of a tubercle from occlusal surfaces of posterior teeth, and lingual surfaces of anterior teeth. Tubercles have an enamel layer covering a dentin core containing a thin extension of pulp. These cusp-like protrusions are susceptible to pulp exposure from wear or fracture because of malocclusion, leading to pulpal complications soon after eruption. Endodontic intervention of permanent teeth with immature roots is unpredic for inflamed pulps, and leaves a tooth with compromised root structure when treating necrotic pulps. Efforts to ensure root maturity have involved preventive or prophylactic treatment with varying degrees of pulp invasiveness. Treatment options have changed as technology and materials have improved. The goal is to review the literature and pathophysiology regarding DE, and present a new comprehensive treatment regimen, including a truly prophylactic approach without pulpal invasiveness. A case study of a mestizo with DE is documented. Treatment of four affected mandibular premolars exhibiting three distinct diagnostic categories will illustrate various aspects of the treatment protocol presented, and tooth morphology of the anomaly is shown to aid clinical recognition.


Asunto(s)
Diente Premolar/anomalías , Corona del Diente/anomalías , Adolescente , Oclusión Dental Traumática/prevención & control , Órgano del Esmalte/embriología , Femenino , Humanos , Mandíbula , Ajuste Oclusal , Pulpotomía , Tratamiento del Conducto Radicular , Anomalías Dentarias/terapia
15.
Dent Update ; 33(10): 582-4, 586-8, 590-1, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17209531

RESUMEN

Teeth are organs that develop in the embryo via a series of interactions between oral epithelium and neural crest-derived ectomesenchyme of the early jaws. These interactions are initiated by the regional production of signalling molecules in the oral epithelium and the transfer of information to the underlying mesenchyme via homeobox gene transcription. This article describes how these interactions are co-ordinated in the embryo during development of the dentition and provides a theoretical basis for the second article in this series; understanding how biologists are attempting to generate teeth artificially in the laboratory.


Asunto(s)
Odontogénesis/fisiología , Germen Dentario/embriología , Diente/embriología , Animales , Anodoncia/embriología , Anodoncia/genética , Región Branquial/embriología , Ectodermo/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Órgano del Esmalte/embriología , Epitelio/embriología , Genes Homeobox/genética , Proteínas Hedgehog/genética , Humanos , Incisivo/embriología , Mandíbula/embriología , Maxilar/embriología , Mesodermo/fisiología , Ratones , Modelos Animales , Diente Molar/embriología , Morfogénesis/fisiología , Mutación/genética , Odontogénesis/genética , Factores de Transcripción/genética
16.
Arch Oral Biol ; 65: 82-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26871984

RESUMEN

OBJECTIVE: Ghrelin, an appetite-stimulating hormone, plays diverse regulatory functions in cell growth, proliferation, differentiation and apoptosis during mammalian development. There is limited information currently available regarding Ghrelin expression during mammalian tooth development, thus we aimed to establish the spatiotemporal expression of Ghrelin during murine molar odontogenesis. DESIGN: Immunohistochemistry was performed to detect the expression pattern of Ghrelin in mandible molar from E15.5 to PN7 during murine tooth development. RESULTS: The results showed that Ghrelin initially expressed in the inner enamel epithelium and the adjacent mesenchymal cells below, further with persistent expression in the ameloblasts and odontoblasts throughout the following developmental stages. In addition, Ghrelin was also present in Hertwig's epithelial root sheath at the beginning of tooth root formation. CONCLUSIONS: These results suggest that Ghrelin was present in tooth organs throughout the stages of tooth development, especially in ameloblasts and odontoblasts with little spatiotemporal expression differences. However, the potential regulatory roles of this hormone in tooth development still need to be validated by functional studies.


Asunto(s)
Ghrelina/biosíntesis , Ghrelina/metabolismo , Diente Molar/metabolismo , Ameloblastos/citología , Ameloblastos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Esmalte Dental/citología , Esmalte Dental/embriología , Esmalte Dental/metabolismo , Órgano del Esmalte/embriología , Órgano del Esmalte/crecimiento & desarrollo , Órgano del Esmalte/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos ICR , Diente Molar/citología , Diente Molar/efectos de los fármacos , Diente Molar/crecimiento & desarrollo , Odontoblastos/citología , Odontoblastos/metabolismo , Odontogénesis/efectos de los fármacos , Odontogénesis/fisiología , Embarazo , Germen Dentario/embriología , Germen Dentario/crecimiento & desarrollo , Germen Dentario/metabolismo , Raíz del Diente/embriología , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo
17.
J Histochem Cytochem ; 53(6): 763-72, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15928325

RESUMEN

The localization and biosynthesis of perlecan, a basement membrane-type heparan sulfate proteoglycan, were studied in developing tooth germs by using murine molars in neonatal and postnatal stages and primary cultured cells of the enamel organ and dental papilla to demonstrate the role of perlecan in normal odontogenesis. Perlecan was immunolocalized mainly in the intercellular spaces of the enamel organ as well as in the dental papilla/pulp or in the dental follicle. By in situ hybridization, mRNA signals for perlecan core protein were intensely demonstrated in the cytoplasm of stellate reticulum cells and in dental papilla/pulp cells, including odontoblasts and fibroblastic cells in the dental follicle. Furthermore, the in vitro biosyntheses of perlecan core protein by the enamel organ and dental papilla/pulp cells were confirmed by immunofluorescence, immunoprecipitation, and reverse transcriptase-polymerase chain reaction. The results indicate that perlecan is synthesized by the dental epithelial cells and is accumulated in their intercellular spaces to form the characteristic stellate reticulum, whose function is still unknown.


Asunto(s)
Órgano del Esmalte/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Animales , Animales Recién Nacidos , Membrana Basal/metabolismo , Células Cultivadas , Papila Dental/metabolismo , Pulpa Dental/metabolismo , Saco Dental/metabolismo , Órgano del Esmalte/embriología , Órgano del Esmalte/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Ratones , Ratones Endogámicos ICR , Odontogénesis , Especificidad de Órganos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Mech Dev ; 86(1-2): 63-74, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10446266

RESUMEN

Members of the transforming growth factor-beta (TGF-beta) superfamily signal through their cognate receptors to determine cell phenotypes during embryogenesis. Our previous studies on the regulation of first branchial arch morphogenesis have identified critical components of a hierarchy of different TGF-beta isoforms and their possible functions in regulating tooth and cartilage formation during mandibular morphogenesis. Here we tested the hypothesis that TGF-beta type II receptor (TGF-beta IIR) is a critical component in the TGF-beta signaling pathway regulating tooth formation. To establish the precise location of TGF-beta ligand and its cognate receptor, we first performed detailed analyses of the localization of both TGF-beta2 and TGF-beta IIR during initiation and subsequent morphogenesis of developing embryonic mouse tooth organs. A possible autocrine functional role for TGF-beta and its cognate receptor (TGF-beta IIR) was inferred due to the temporal and spatial localization patterns during the early inductive stages of tooth morphogenesis. Second, loss of function of TGF-beta IIR in a mandibular explant culture model resulted in the acceleration of tooth formation to the cap stage while the mandibular explants in the control group only showed bud stage tooth formation. In addition, there was a significant increase in odontogenic epithelial cell proliferation following TGF-beta IIR abrogation. These results demonstrate, for the first time, that abrogation of the TGF-beta IIR stimulates embryonic tooth morphogenesis in culture and reverses the negative regulation of endogenous TGF-beta signaling upon enamel organ epithelial cell proliferation.


Asunto(s)
Región Branquial/embriología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Diente/embriología , Diente/metabolismo , Adenoviridae/genética , Animales , Región Branquial/citología , Región Branquial/metabolismo , División Celular , Órgano del Esmalte/citología , Órgano del Esmalte/embriología , Órgano del Esmalte/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Mandíbula/embriología , Ratones , Morfogénesis , Mutación , Oligonucleótidos Antisentido/genética , Técnicas de Cultivo de Órganos , Proteínas Serina-Treonina Quinasas , ARN Mensajero/análisis , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
19.
J Dent Res ; 84(6): 521-5, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15914588

RESUMEN

Recent developments in tooth-tissue engineering require that we understand the regulatory processes to be preserved to achieve histomorphogenesis and cell differentiation, especially for enamel tissue engineering. Using mouse first lower molars, our objectives were: (1) to determine whether the cap-stage dental mesenchyme can control dental epithelial histogenesis, (2) to test the role of the primary enamel knot (PEK) in specifying the potentialities of the dental mesenchyme, and (3) to evaluate the importance of positional information in epithelial cells. After tissue dissociation, the dental epithelium was further dissociated into individual cells, re-associated with dental mesenchyme, and cultured. Epithelial cells showed a high plasticity: Despite a complete loss of positional information, they rapidly underwent typical dental epithelial histogenesis. This was stimulated by the mesenchyme. Experiments performed at E13 demonstrated that the initial potentialities of the mesenchyme are not specified by the PEK. Positional information of dental epithelial cells does not require the memorization of their history.


Asunto(s)
Morfogénesis/fisiología , Germen Dentario/embriología , Animales , Apoptosis/fisiología , Comunicación Celular , Diferenciación Celular , Órgano del Esmalte/embriología , Células Epiteliales/fisiología , Epitelio/embriología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Mesodermo/fisiología , Ratones , Ratones Endogámicos ICR , Técnicas de Cultivo de Tejidos
20.
J Dent Res ; 84(3): 228-33, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723861

RESUMEN

In wild-type (WT) mice, epithelial apoptosis is involved in reducing the embryonic tooth number and the mesial delimitation of the first molar. We investigated whether apoptosis could also be involved in the reduction of tooth number and the determination of anomalous tooth boundaries in tabby (Ta)/EDA mice. Using serial histological sections and computer-aided 3D reconstructions, we investigated epithelial apoptosis in the lower cheek dentition at embryonic days 14.5-17.5. In comparison with WT mice, apoptosis was increased mainly mesially in Ta dental epithelium from day 15.5. This apoptosis showed a similar mesio-distal extent in all 5 morphotypes (Ia,b,c and IIa,b) of Ta dentition and eliminated the first cheek tooth in morphotypes IIa,b. Apoptosis did not appear to play any causal role in positioning inter-dental gaps. Analysis of the present data suggests that the increased apoptosis in Ta mice is a consequence of impaired tooth development caused by a defect in segmentation of dental epithelium.


Asunto(s)
Apoptosis/fisiología , Displasia Ectodérmica/embriología , Morfogénesis/fisiología , Odontogénesis/fisiología , Germen Dentario/embriología , Animales , Mejilla/embriología , Displasia Ectodérmica/genética , Ectodisplasinas , Órgano del Esmalte/embriología , Epitelio/embriología , Edad Gestacional , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Mandíbula/embriología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos , Ratones Mutantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA