Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.527
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31813625

RESUMEN

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Hexoquinasa/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosfolipasas A2 Secretoras/genética
2.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38979931

RESUMEN

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Asunto(s)
1-Desoxinojirimicina , Enfermedad de Alzheimer , Resistencia a la Insulina , Neuronas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Humanos , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/análogos & derivados , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Línea Celular Tumoral , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Transportador de Glucosa de Tipo 3/genética , Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación/efectos de los fármacos , Biomarcadores/metabolismo
3.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38690785

RESUMEN

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Asunto(s)
Arabidopsis , Celulosa , Glucosilceramidas , Glucosiltransferasas , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Celulosa/metabolismo , Celulosa/biosíntesis , Glucosilceramidas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/análogos & derivados , Pared Celular/metabolismo
4.
BMC Plant Biol ; 24(1): 133, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395770

RESUMEN

BACKGROUND: 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. RESULTS: In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. CONCLUSIONS: These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves.


Asunto(s)
1-Desoxinojirimicina , Morus , 1-Desoxinojirimicina/análisis , 1-Desoxinojirimicina/metabolismo , Morus/genética , NADP/metabolismo , Vías Biosintéticas , Filogenia , Proteínas Recombinantes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Aminoácidos/metabolismo , Hojas de la Planta/metabolismo
5.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772716

RESUMEN

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


Asunto(s)
1-Desoxinojirimicina , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II , Manosafosfatos , alfa-Glucosidasas , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Animales , Terapia de Reemplazo Enzimático/métodos , Manosafosfatos/metabolismo , Ratones , alfa-Glucosidasas/uso terapéutico , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/administración & dosificación , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/uso terapéutico , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo
6.
Plant Physiol ; 192(2): 1307-1320, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36800200

RESUMEN

As the prevalence of diabetes continues to increase, the number of individuals living with diabetes complications will reach an unprecedented magnitude. Continuous use of some synthetic agents to reduce blood glucose levels causes severe side effects, and thus, the demand for nontoxic, affordable drugs persists. Naturally occurring compounds, such as iminosugars derived from the mulberry (Morus spp.), have been shown to reduce blood glucose levels. In mulberry, 1-deoxynojirimycin (DNJ) is the predominant iminosugar. However, the mechanism underlying DNJ biosynthesis is not completely understood. Here, we showed that DNJ in mulberry is derived from sugar and catalyzed through 2-amino-2-deoxy-D-mannitol (ADM) dehydrogenase MnGutB1. Combining both targeted and nontargeted metabolite profiling methods, DNJ and its precursors ADM and nojirimycin (NJ) were quantified in mulberry samples from different tissues. Purified His-tagged MnGutB1 oxidized the hexose derivative ADM to form the 6-oxo compound DNJ. The mutant MnGutB1 D283N lost this remarkable capability. Furthermore, in contrast to virus-induced gene silencing of MnGutB1 in mulberry leaves that disrupted the biosynthesis of DNJ, overexpression of MnGutB1 in hairy roots and light-induced upregulation of MnGutB1 enhanced DNJ accumulation. Our results demonstrated that hexose derivative ADM, rather than lysine derivatives, is the precursor in DNJ biosynthesis, and it is catalyzed by MnGutB1 to form the 6-oxo compound. These results represent a breakthrough in producing DNJ and its analogs for medical use by metabolic engineering or synthetic biology.


Asunto(s)
1-Desoxinojirimicina , Morus , Humanos , Glucemia , Frutas , Oxidorreductasas , Hojas de la Planta/genética
7.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570815

RESUMEN

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Asunto(s)
Diabetes Mellitus , Enfermedades de los Perros , Microbioma Gastrointestinal , Enfermedades Metabólicas , Morus , Humanos , Animales , Perros , 1-Desoxinojirimicina/farmacología , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/veterinaria , Diabetes Mellitus/veterinaria , Enfermedades Metabólicas/veterinaria , Hojas de la Planta
8.
J Med Genet ; 60(9): 850-858, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36669872

RESUMEN

BACKGROUND: A small but significant reduction in left ventricular (LV) mass after 18 months of migalastat treatment has been reported in Fabry disease (FD). This study aimed to assess the effect of migalastat on FD cardiac involvement, combining LV morphology and tissue characterisation by cardiac magnetic resonance (CMR) with cardiopulmonary exercise testing (CPET). METHODS: Sixteen treatment-naïve patients with FD (4 women, 46.4±16.2 years) with cardiac involvement (reduced T1 values on CMR and/or LV hypertrophy) underwent ECG, echocardiogram, troponin T and NT-proBNP (N-Terminal prohormone of Brain Natriuretic Peptide) assay, CMR with T1 mapping, and CPET before and after 18 months of migalastat. RESULTS: No change in LV mass was detected at 18 months compared to baseline (95.2 g/m2 (66.0-184.0) vs 99.0 g/m2 (69.0-121.0), p=0.55). Overall, there was an increase in septal T1 of borderline significance (870.0 ms (848-882) vs 860.0 ms (833.0-875.0), p=0.056). Functional capacity showed an increase in oxygen consumption (VO2) at anaerobic threshold (15.50 mL/kg/min (13.70-21.50) vs 14.50 mL/kg/min (11.70-18.95), p=0.02), and a trend towards an increase in percent predicted peak VO2 (72.0 (63.0-80.0) vs 69.0 (53.0-77.0), p=0.056) was observed. The subset of patients who showed an increase in T1 value and a reduction in LV mass (n=7, 1 female, age 40.5 (28.6-76.0)) was younger and at an earlier disease stage compared to the others, and also exhibited greater improvement in exercise tolerance. CONCLUSION: In treatment-naïve FD patients with cardiac involvement, 18-month treatment with migalastat stabilised LV mass and was associated with a trend towards an improvement in exercise tolerance. A tendency to T1 increase was detected by CMR. The subset of patients who had significant benefits from the treatment showed an earlier cardiac disease compared to the others. TRIAL REGISTRATION NUMBER: NCT03838237.


Asunto(s)
Enfermedad de Fabry , Cardiopatías , Humanos , Femenino , Adulto , Imagen por Resonancia Magnética , 1-Desoxinojirimicina , Valor Predictivo de las Pruebas
9.
J Med Genet ; 60(7): 722-731, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36543533

RESUMEN

BACKGROUND: Fabry disease is a rare, multisystemic disorder caused by GLA gene variants that lead to alpha galactosidase A deficiency, resulting in accumulation of glycosphingolipids and cellular dysfunction. Fabry-associated clinical events (FACEs) cause significant morbidity and mortality, yet the long-term effect of Fabry therapies on FACE incidence remains unclear. METHODS: This posthoc analysis evaluated incidence of FACEs (as a composite outcome and separately for renal, cardiac and cerebrovascular events) in 97 enzyme replacement therapy (ERT)-naïve and ERT-experienced adults with Fabry disease and amenable GLA variants who were treated with migalastat for up to 8.6 years (median: 5 years) in Phase III clinical trials of migalastat. Associations between baseline characteristics and incidence of FACEs were also evaluated. RESULTS: During long-term migalastat treatment, 17 patients (17.5%) experienced 22 FACEs and there were no deaths. The incidence rate of FACEs was 48.3 events per 1000 patient-years overall. Numerically higher incidence rates were observed in men versus women, patients aged >40 years versus younger patients, ERT-naïve versus ERT-experienced patients and men with the classic phenotype versus men and women with all other phenotypes. There was no statistically significant difference in time to first FACE when analysed by patient sex, phenotype, prior treatment status or age. Lower baseline estimated glomerular filtration rate (eGFR) was associated with an increased risk of FACEs across patient populations. CONCLUSIONS: The overall incidence of FACEs for patients during long-term treatment with migalastat compared favourably with historic reports involving ERT. Lower baseline eGFR was a significant predictor of FACEs.


Asunto(s)
Enfermedad de Fabry , Humanos , Femenino , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , alfa-Galactosidasa/uso terapéutico , Riñón , 1-Desoxinojirimicina/uso terapéutico , Terapia de Reemplazo Enzimático
10.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398549

RESUMEN

The iminosugar 1-deoxynojirimicyn (DNJ) contained in mulberry leaves has displayed systemic beneficial effects against disorders of carbohydrate metabolism. Nevertheless, its effect is impaired by the short half-life. Alginate-based carriers were developed to encapsulate a DNJ-rich mulberry extract: Ca-alginate beads, obtained by external gelation, and spray-dried alginate microparticles (SDMs). Mean size and distribution, morphology, drug loading, encapsulation efficiency, experimental yield, and release characteristics were determined for the two formulations. Ca-alginate beads and SDMs exhibited an encapsulation efficiency of about 54% and 98%, respectively, and a DNJ loading in the range of 0.43-0.63 µg/mg. The in vitro release study demonstrated the carriers' capability in controlling the DNJ release in acid and basic conditions (<50% in 5 h), due to electrostatic interactions, which were demonstrated by 1H-NMR relaxometry studies. Thus, alginate-based particles proved to be promising strategies for producing food supplements containing mulberry leaf extracts for the management of hyperglycemic state.


Asunto(s)
Alginatos , Morus , Alginatos/metabolismo , 1-Desoxinojirimicina/química , Morus/química , Suplementos Dietéticos , Extractos Vegetales/química , Hojas de la Planta/metabolismo
11.
Protein Expr Purif ; 201: 106166, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174814

RESUMEN

In this study, we investigated a key enzyme encoded by the gene copper amine oxidase (MaCAO), which is involved in the biosynthetic pathway of 1-deoxynojirimycin (DNJ)1, an active ingredient in mulberry leaves. The 1680 bp long MaCAO was successfully cloned (GenBank accession no: MH205733). Subsequently, MaCAO was heterologously expressed using a recombinant plasmid, pET-22b (+)/MaCAO in Escherichia coli BL21 (DE3). A protein with a molecular mass of 62.9 kDa was obtained, whose function was validated through enzymatic reaction. Bioinformatics analysis identified that MaCAO contained the same conserved domain as that of copper amine oxidases ("NYDY"). Furthermore, the tertiary structure of the predicted protein using homology modeling revealed 46% similarity with that of copper amine oxidase (Protein Data Bank ID: 1W2Z). Gas chromatography-mass spectrometry analysis of the enzymatic reaction revealed that MaCAO could catalyze 1,5-pentanediamine to produce 5-aminopentanal. Additionally, levels of mulberry leaf DNJ content were significantly positively correlated with expression levels of MaCAO (P < 0.001). Our results conclude that MaCAO is the key enzyme involved in the biosynthetic pathway of DNJ. The function of MaCAO is validated, providing a foundation for the further analysis of biosynthetic pathways of DNJ in mulberry leaves using tools of synthetic biology.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Morus , 1-Desoxinojirimicina/metabolismo , Amina Oxidasa (conteniendo Cobre)/genética , Cadaverina/metabolismo , Clonación Molecular , Cobre/metabolismo , Morus/química , Hojas de la Planta/metabolismo
12.
Crit Rev Food Sci Nutr ; 63(19): 3468-3496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34658276

RESUMEN

Mulberry leaves are rich in biologically active compounds, including phenolics, polysaccharides, and alkaloids. Mulberry leaf iminosugars (MLIs; a type of polyhydroxylated alkaloids), in particular, have been gaining increasing attention due to their health-promoting effects, including anti-diabetic, anti-obesity, anti-hyperglycemic, anti-hypercholesterolemic, anti-inflammatory, and gut microbiota-modulatory activities. Knowledge regarding the in vivo bioavailability and bioactivity of MLIs are crucial to understand their role and function and human health. Therefore, this review is aimed to comprehensively summarize the existing studies on the oral pharmacokinetics and the physiological significance of selected MLIs (i.e.,1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ). Evidence have suggested that MLIs possess relatively good uptake and safety profiles, which support their prospective use for oral intake; the therapeutic potential of these compounds against metabolic and chronic disorders and the underlying mechanisms behind these effects have also been studied in in vitro and in vivo models. Also discussed are the biosynthetic pathways of MLIs in plants, as well as the agronomic and processing factors that affect their concentration in mulberry leaves-derived products.


Asunto(s)
Alcaloides , Morus , Humanos , 1-Desoxinojirimicina/metabolismo , Morus/metabolismo , Hojas de la Planta/metabolismo
13.
Eur J Neurol ; 30(9): 2919-2945, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37209042

RESUMEN

BACKGROUND: Since the results of previous studies regarding the safety and efficacy of miglustat in GM2 gangliosidosis (GM2g) were inconsistent, we aimed to assess miglustat therapy in GM2g patients. METHODS: This study followed the latest version of PRISMA. We included the observational or interventional studies reporting GM2g patients under miglustat therapy by searching PubMed, Web of Science, and Scopus. Data extracted included the natural history of individual patient data, as well as the safety and efficacy of miglustat in GM2g patients. The quality assessment was performed using the Joanna Briggs Institute Critical Appraisal checklist. RESULTS: A total of 1023 records were identified and reduced to 621 after removing duplicates. After screening and applying the eligibility criteria, 10 articles and 2 abstracts met the inclusion criteria. Overall, the studies represented 54 patients with GM2g under treatment with miglustat and 22 patients with GM2g in the control group. Among patients with available data, 14 and 54 have been diagnosed with Sandhoff disease and Tay-Sachs disease, respectively. Patients included in this review consisted of 23 infantile, 4 late-infantile, 18 juvenile, and 31 adult-onset GM2g. CONCLUSIONS: Although miglustat should not be considered a definite treatment for GM2g, it appears that patients, particularly those with infantile or late-infantile GM2g, could benefit from miglustat therapy to some extent. We also make some suggestions regarding future studies presenting their findings in a standard format to facilitate pooling the available data in such rare diseases for a more comprehensive conclusion.


Asunto(s)
Gangliosidosis GM2 , Adulto , Humanos , Gangliosidosis GM2/tratamiento farmacológico , 1-Desoxinojirimicina/efectos adversos
14.
Ann Pharmacother ; 57(3): 267-282, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35815393

RESUMEN

OBJECTIVE: Gaucher disease (GD) is a rare disorder linked to the absence/deficiency of glucocerebrosidase. GD can be treated by enzyme replacement therapy (ERT) and substrate reduction therapy (SRT). The aim of this systematic review (SR) is to assess the effectiveness of drugs used for GD treatment. DATA SOURCES: Searches were conducted in PubMed and Scopus, in April 2021. The search strategies encompassed the name of the disease and of the drug treatments. Manual search was also conducted. STUDY SELECTION AND DATA EXTRACTION: Observational and interventional longitudinal studies evaluating ERT and SRT for GD were included. Single mean meta-analyses were conducted for each drug using R. DATA SYNTHESIS: The initial search retrieved 2246 articles after duplicates were removed. Following screening and eligibility assessment, 68 reports were included. The studies evaluated imiglucerase, velaglucerase alfa, taliglucerase alfa, miglustat, and eliglustat. The results showed that ERT is effective as a treatment in both naïve and experienced patients. Miglustat did not significantly improve blood outcomes in naïve patients and resulted in a decrease in the platelet levels of experienced patients. Eliglustat was mainly assessed for experienced patients and resulted in stable outcome values. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: This extensive SR confirms the effectiveness of GD treatments in short- and long-term follow-ups. CONCLUSIONS: The results were favorable for all ERTs and for eliglustat. Based on the assessed evidence, miglustat did not achieved expressive results. However, all evidence should be interpreted considering its limitations and does not replace well-conducted randomized trials.


Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/diagnóstico , Glucosilceramidasa/uso terapéutico , Glucosilceramidasa/efectos adversos , 1-Desoxinojirimicina/uso terapéutico , Plaquetas , Terapia de Reemplazo Enzimático/métodos
15.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487270

RESUMEN

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacología , Antioxidantes/farmacología , Colesterol , Citocinas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Ubiquinona/análogos & derivados
16.
J Pharmacokinet Pharmacodyn ; 50(1): 63-74, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36376611

RESUMEN

Recently, a new mechanism of drug-drug interaction (DDI) was reported between agalsidase, a therapeutic protein, and migalastat, a small molecule, both of which are treatment options of Fabry disease. Migalastat is a pharmacological chaperone that stabilizes the native form of both endogenous and exogenous agalsidase. In Fabry patients co-administrated with agalsidase and migalastat, the increase in active agalsidase exposure is considered a pharmacokinetic effect of agalsidase infusion but a pharmacodynamic effect of migalastat administration, which makes this new DDI mechanism even more interesting. To quantitatively characterize the interaction between agalsidase and migalastat in human, a pharmacometric DDI model was developed using literature reported concentration-time data. The final model includes three components: a 1-compartment linear model component for migalastat; a 2-compartment linear model component for agalsidase; and a DDI component where the agalsidase-migalastat complex is formed via second order association constant kon, dissociated with first order dissociation constant koff, and distributed/eliminated with same rates as agalsidase alone, albeit the complex (i.e., bound agalsidase) has higher enzyme activity compared to free agalsidase. The final model adequately captured several key features of the unique interaction between agalsidase and migalastat, and successfully characterized the kinetics of migalastat as well as the kinetics and activities of agalsidase when both drugs were used alone or in combination following different doses. Most parameters were reasonably estimated with good precision. Because the model includes mechanistic basis of therapeutic protein and small molecule pharmacological chaperone interaction, it can potentially serve as a foundational work for DDIs with similar mechanism.


Asunto(s)
1-Desoxinojirimicina , alfa-Galactosidasa , Humanos , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo , Mutación , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Interacciones Farmacológicas
17.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674610

RESUMEN

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Asunto(s)
Curcumina , Enfermedad de Fabry , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , alfa-Galactosidasa/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Galactosa/metabolismo , Mutación , Lisosomas/metabolismo , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico
18.
Molecules ; 28(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375273

RESUMEN

Mulberry leaves are a well-known traditional Chinese medicine herb, and it has been observed since ancient times that leaves collected after frost have superior medicinal properties. Therefore, understanding the changes in critical metabolic components of mulberry leaves, specifically Morus nigra L., is essential. In this study, we conducted widely targeted metabolic profiling analyses on two types of mulberry leaves, including Morus nigra L. and Morus alba L., harvested at different times. In total, we detected over 100 compounds. After frost, 51 and 58 significantly different metabolites were identified in the leaves of Morus nigra L. and Morus alba L., respectively. Further analysis revealed a significant difference in the effect of defrosting on the accumulation of metabolites in the two mulberries. Specifically, in Morus nigra L., the content of 1-deoxynojirimycin (1-DNJ) in leaves decreased after frost, while flavonoids peaked after the second frost. In Morus alba L., the content of DNJ increased after frost, reaching its peak one day after the second frost, whereas flavonoids primarily peaked one week before frost. In addition, an analysis of the influence of picking time on metabolite accumulation in two types of mulberry leaves demonstrated that leaves collected in the morning contained higher levels of DNJ alkaloids and flavonoids. These findings provide scientific guidance for determining the optimal harvesting time for mulberry leaves.


Asunto(s)
Alcaloides , Morus , Morus/metabolismo , Flavonoides/análisis , 1-Desoxinojirimicina/metabolismo , Alcaloides/metabolismo , Hojas de la Planta/química , Extractos Vegetales/metabolismo
19.
Angew Chem Int Ed Engl ; 62(8): e202217809, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36573850

RESUMEN

Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.


Asunto(s)
1-Desoxinojirimicina , Glicósido Hidrolasas , Conformación Molecular , Glicósido Hidrolasas/metabolismo , Glicósidos , Inhibidores Enzimáticos/química
20.
Planta ; 255(6): 121, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538157

RESUMEN

MAIN CONCLUSION: The novel C-methyltransferase, MaMT1, could catalyze the conversion of piperidine to 2-methylpiperidine, which may be involved in the methylation step of DNJ biosynthesis in mulberry leaves. Mulberry (Morus alba L.) is a worldwide crop with medicinal, feeding and nutritional value, and 1-deoxynojirimycin ((2R, 3R, 4R, 5S)-2-hydroxymethyl-3, 4, 5-trihydroxypiperidine, DNJ) alkaloid, a potent α-glucosidase inhibitor, is its main active ingredient. Our previous researches clarified the biosynthetic pathway of DNJ from lysine to Δ1-piperideine, but its downstream pathway is unclear. Herein, eight differential methyltransferases (MTs) genes were screened from transcriptome profiles of mulberry leaves with significant differences in DNJ content (P < 0.01). Subsequently, MaMT1 (OM140666) and MaMT2 (OM140667) were hypothesized as candidate genes related to DNJ biosynthesis by correlation analysis of genes expression levels and DNJ content of mulberry leaves at different dates. Functional characterization of MaMT1 and MaMT2 were performed by cloning, prokaryotic expression and enzymatic reaction in vitro, and it showed that MaMT1 protein could catalyze the conversion of piperidine to 2-methylpiperidine. Moreover, molecular docking confirmed the interaction of MaMT1 protein with piperidine and S-adenosyl-L-methionine (SAM), indicating that MaMT1 had C-methyltransferase activity, while MaMT2 did not. The above results suggested that MaMT1 may be involved in the methylation step of DNJ alkaloid biosynthesis in mulberry leaves, which is a breakthrough in the analysis of DNJ alkaloid biosynthetic pathway. It is worth mentioning that the novel MaMT1, annotated as serine hydroxymethyltransferase, could rely on SAM to perform C-methyltransferase function. Therefore, our findings contribute new insights into the research of DNJ alkaloid biosynthesis and C-methyltransferase family.


Asunto(s)
Alcaloides , Morus , 1-Desoxinojirimicina/análisis , 1-Desoxinojirimicina/metabolismo , 1-Desoxinojirimicina/farmacología , Alcaloides/metabolismo , Clonación Molecular , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Morus/genética , Morus/metabolismo , Hojas de la Planta/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA