Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(12): e1009938, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914708

RESUMEN

Choline is an essential component of Acetylcholine (ACh) biosynthesis pathway which requires high-affinity Choline transporter (ChT) for its uptake into the presynaptic terminals of cholinergic neurons. Previously, we had reported a predominant expression of ChT in memory processing and storing region of the Drosophila brain called mushroom bodies (MBs). It is unknown how ChT contributes to the functional principles of MB operation. Here, we demonstrate the role of ChT in Habituation, a non-associative form of learning. Odour driven habituation traces are laid down in ChT dependent manner in antennal lobes (AL), projection neurons (PNs), and MBs. We observed that reduced habituation due to knock-down of ChT in MBs causes hypersensitivity towards odour, suggesting that ChT also regulates incoming stimulus suppression. Importantly, we show for the first time that ChT is not unique to cholinergic neurons but is also required in inhibitory GABAergic neurons to drive habituation behaviour. Our results support a model in which ChT regulates both habituation and incoming stimuli through multiple circuit loci via an interplay between excitatory and inhibitory neurons. Strikingly, the lack of ChT in MBs shows characteristics similar to the major reported features of Autism spectrum disorders (ASD), including attenuated habituation, sensory hypersensitivity as well as defective GABAergic signalling. Our data establish the role of ChT in habituation and suggest that its dysfunction may contribute to neuropsychiatric disorders like ASD.


Asunto(s)
Acetilcolina/genética , Proteínas de Transporte de Membrana/genética , Cuerpos Pedunculados/metabolismo , Bulbo Olfatorio/metabolismo , Olfato/genética , Acetilcolina/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/metabolismo , Larva/genética , Larva/fisiología , Aprendizaje , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Odorantes/análisis , Terminales Presinápticos/metabolismo , Transducción de Señal/genética , Olfato/fisiología
2.
Cell Mol Life Sci ; 78(4): 1565-1575, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32676916

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) belong to the superfamily of pentameric ligand-gated ion channels, and in neuronal tissues, are assembled from various types of α- and ß-subunits. Furthermore, the subunits α4 and ß2 assemble in two predominant stoichiometric forms, (α4)2(ß2)3 and (α4)3(ß2)2, forming receptors with dramatically different sensitivity to agonists and allosteric modulators. However, mechanisms by which the two stoichiometric forms are regulated are not known. Here, using heterologous expression in mammalian cells, single-channel patch-clamp electrophysiology, and calcium imaging, we show that the ER-resident protein NACHO selectively promotes the expression of the (α4)2(ß2)3 stoichiometry, whereas the cytosolic molecular chaperone 14-3-3η selectively promotes the expression of the (α4)3(ß2)2 stoichiometry. Thus, NACHO and 14-3-3η are potential physiological regulators of subunit stoichiometry, and are potential drug targets for re-balancing the stoichiometry in pathological conditions involving α4ß2 nAChRs such as nicotine dependence and epilepsy.


Asunto(s)
Proteínas 14-3-3/genética , Neuronas/metabolismo , Subunidades de Proteína/genética , Receptores Nicotínicos/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Humanos , Ligandos , Agonistas Nicotínicos/farmacología , Oxadiazoles/metabolismo , Técnicas de Placa-Clamp
3.
PLoS Genet ; 15(1): e1007896, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677018

RESUMEN

Neurons typically release both a small-molecule neurotransmitter and one or more neuropeptides, but how these two types of signal from the same neuron might act together remains largely obscure. For example, serotonergic neurons in mammalian brain express the neuropeptide Substance P, but it is unclear how this co-released neuropeptide might modulate serotonin signaling. We studied this issue in C. elegans, in which all serotonergic neurons express the neuropeptide NLP-3. The serotonergic Hermaphrodite Specific Neurons (HSNs) are command motor neurons within the egg-laying circuit which have been shown to release serotonin to initiate egg-laying behavior. We found that egg-laying defects in animals lacking serotonin were far milder than in animals lacking HSNs, suggesting that HSNs must release other signal(s) in addition to serotonin to stimulate egg laying. While null mutants for nlp-3 had only mild egg-laying defects, animals lacking both serotonin and NLP-3 had severe defects, similar to those of animals lacking HSNs. Optogenetic activation of HSNs induced egg laying in wild-type animals, and in mutant animals lacking either serotonin or NLP-3, but failed to induce egg laying in animals lacking both. We recorded calcium activity in the egg-laying muscles of animals lacking either serotonin, NLP-3, or both. The single mutants, and to a greater extent the double mutant, showed muscle activity that was uncoordinated and unable to expel eggs. Specifically, the vm2 muscles cells, which are direct postsynaptic targets of the HSN, failed to contract simultaneously with other egg-laying muscle cells. Our results show that the HSN neurons use serotonin and the neuropeptide NLP-3 as partially redundant co-transmitters that together stimulate and coordinate activity of the target cells onto which they are released.


Asunto(s)
Conducta Animal , Neuropéptidos/genética , Oviposición/genética , Serotonina/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Trastornos del Desarrollo Sexual/genética , Femenino , Masculino , Neuronas Motoras/metabolismo , Mutación , Neurotransmisores/genética , Neuronas Serotoninérgicas/metabolismo , Transducción de Señal
4.
J Neurochem ; 158(6): 1274-1291, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32869293

RESUMEN

Acetylcholine is an abundant neurotransmitter in all animals. Effects of acetylcholine are excitatory, inhibitory, or modulatory depending on the receptor and cell type. Research using the nematode C. elegans has made ground-breaking contributions to the mechanistic understanding of cholinergic transmission. Powerful genetic screens for behavioral mutants or for responses to pharmacological reagents identified the core cellular machinery for synaptic transmission. Pharmacological reagents that perturb acetylcholine-mediated processes led to the discovery and also uncovered the composition and regulators of acetylcholine-activated channels and receptors. From a combination of electrophysiological and molecular cellular studies, we have gained a profound understanding of cholinergic signaling at the levels of synapses, neural circuits, and animal behaviors. This review will begin with a historical overview, then cover in-depth current knowledge on acetylcholine-activated ionotropic receptors, mechanisms regulating their functional expression and their functions in regulating locomotion.


Asunto(s)
Acetilcolina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Activación del Canal Iónico/fisiología , Locomoción/fisiología , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/fisiología , Acetilcolina/genética , Acetilcolina/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Colinérgicos/metabolismo , Colinérgicos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Receptores Colinérgicos/genética , Transmisión Sináptica/efectos de los fármacos
5.
J Neurochem ; 158(6): 1425-1438, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638173

RESUMEN

Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.


Asunto(s)
Acetilcolina/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Colinérgicos/uso terapéutico , Neuronas Colinérgicas/metabolismo , ARN/metabolismo , Acetilcolina/genética , Animales , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/genética , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Humanos , ARN/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430415

RESUMEN

Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.


Asunto(s)
Acetilcolina/metabolismo , Encéfalo/metabolismo , Homeostasis/genética , Miocardio/metabolismo , Acetilcolina/genética , Animales , Sistema Nervioso Autónomo/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Sistema Nervioso Parasimpático/metabolismo , Nervio Vago/metabolismo
7.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401680

RESUMEN

Salivary gland dysfunction induces salivary flow reduction and a dry mouth, and commonly involves oral dysfunction, tooth structure deterioration, and infection through reduced salivation. This study aimed to investigate the impact of aging on the salivary gland by a metabolomics approach in an extensive aging mouse model, SAMP1/Klotho -/- mice. We found that the salivary secretion of SAMP1/Klotho -/- mice was dramatically decreased compared with that of SAMP1/Klotho WT (+/+) mice. Metabolomics profiling analysis showed that the level of acetylcholine was significantly decreased in SAMP1/Klotho -/- mice, although the corresponding levels of acetylcholine precursors, acetyl-CoA and choline, increased. Interestingly, the mRNA and protein expression of choline acetyltransferase (ChAT), which is responsible for catalyzing acetylcholine synthesis, was significantly decreased in SAMP1/Klotho -/- mice. The overexpression of ChAT induced the expression of salivary gland functional markers (α-amylase, ZO-1, and Aqua5) in primary cultured salivary gland cells from SAMP1/Klotho +/+ and -/- mice. In an in vivo study, adeno-associated virus (AAV)-ChAT transduction significantly increased saliva secretion compared with the control in SAMP1/Klotho -/- mice. These results suggest that the dysfunction in acetylcholine biosynthesis induced by ChAT reduction may cause impaired salivary gland function.


Asunto(s)
Acetilcolina/metabolismo , Envejecimiento/metabolismo , Colina O-Acetiltransferasa/metabolismo , Glucuronidasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Glándulas Salivales/metabolismo , Acetilcoenzima A/metabolismo , Acetilcolina/genética , Envejecimiento/genética , Animales , Línea Celular , Colina/metabolismo , Colina O-Acetiltransferasa/genética , Regulación hacia Abajo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Glucuronidasa/genética , Humanos , Proteínas Klotho , Proteínas de la Membrana/genética , Metabolómica , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Glándulas Salivales/enzimología , Regulación hacia Arriba , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921461

RESUMEN

Astrocytes play central roles in normal brain function and are critical components of synaptic networks that oversee behavioral outputs. Despite their close affiliation with neurons, how neuronal-derived signals influence astrocyte function at the gene expression level remains poorly characterized, largely due to difficulties associated with dissecting neuron- versus astrocyte-specific effects. Here, we use an in vitro system of stem cell-derived astrocytes to identify gene expression profiles in astrocytes that are influenced by neurons and regulate astrocyte development. Furthermore, we show that neurotransmitters and neuromodulators induce distinct transcriptomic and chromatin accessibility changes in astrocytes that are unique to each of these neuroactive compounds. These findings are highlighted by the observation that noradrenaline has a more profound effect on transcriptional profiles of astrocytes compared to glutamate, gamma-aminobutyric acid (GABA), acetylcholine, and serotonin. This is demonstrated through enhanced noradrenaline-induced transcriptomic and chromatin accessibility changes in vitro and through enhanced calcium signaling in vivo. Taken together, our study reveals distinct transcriptomic and chromatin architecture signatures in astrocytes in response to neuronal-derived neuroactive compounds. Since astrocyte function is affected in all neurological disorders, this study provides a new entry point for exploring genetic mechanisms of astrocyte-neuron communication that may be dysregulated in disease.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Transcriptoma/genética , Acetilcolina/genética , Animales , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Ácido Glutámico/genética , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Norepinefrina/genética , Serotonina/genética , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/genética
9.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652901

RESUMEN

Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.


Asunto(s)
Acetilcolina/genética , Secuencia de Aminoácidos/genética , Síndromes Miasténicos Congénitos/genética , Receptores Nicotínicos/genética , Acetilcolina/metabolismo , Sitios de Unión/genética , Calcio/metabolismo , Humanos , Cinética , Síndromes Miasténicos Congénitos/patología , Técnicas de Placa-Clamp , Mutación Puntual/genética , Unión Proteica/genética
10.
Hum Mol Genet ; 26(5): 888-900, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069796

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid.


Asunto(s)
Ácido Fólico/efectos adversos , Homocistinuria/genética , Memoria a Corto Plazo/efectos de los fármacos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Dieta/efectos adversos , Femenino , Ácido Fólico/administración & dosificación , Homocistinuria/inducido químicamente , Homocistinuria/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/fisiopatología , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones , Espasticidad Muscular/inducido químicamente , Espasticidad Muscular/patología , Embarazo , Trastornos Psicóticos/genética , Trastornos Psicóticos/patología
11.
FASEB J ; 32(9): 4744-4752, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570391

RESUMEN

Acetylcholine (ACh)-synthesizing neurons are major components of the enteric nervous system (ENS). They release ACh and peptidergic neurotransmitters onto enteric neurons and muscle. However, pharmacological interrogation has proven inadequate to demonstrate an essential role for ACh. Our objective was to determine whether elimination of ACh synthesis during embryogenesis alters prenatal viability, intestinal function, the neurotransmitter complement, and the microbiome. Conditional deletion of choline acetyltransferase ( ChAT), the ACh synthetic enzyme, in neural crest-derived neurons ( ChAT-Null) was performed. Survival, ChAT activity, gut motility, and the microbiome were studied. ChAT was conditionally deleted in ENS neural crest-derived cells. Despite ChAT absence, mice were born live and survived the first 2 wk. They failed to gain significant weight in the third postnatal week, dying between postnatal d 18 and 30. Small intestinal transit of carmine red was 50% slower in ChAT-Nulls vs. WT and ChAT- Het. The colons of many neonatal ChAT-Null mice contained compacted feces, suggesting dysmotility. Microbiome analysis revealed dysbiosis in ChAT-Null mice. Developmental deletion of ChAT activity in enteric neurons results in proximal gastrointestinal tract dysmotility, critically diminished colonic transit, failure to thrive, intestinal dysbiosis, and death. ACh is necessary for sustained gut motility and survival of neonatal mice after weaning.-Johnson, C. D., Barlow-Anacker, A. J., Pierre, J. F., Touw, K., Erickson, C. S., Furness, J. B., Epstein, M. L., Gosain, A. Deletion of choline acetyltransferase in enteric neurons results in postnatal intestinal dysmotility and dysbiosis.


Asunto(s)
Colina O-Acetiltransferasa/genética , Disbiosis/genética , Intestinos/citología , Neuronas/citología , Acetilcolina/genética , Animales , Sistema Nervioso Entérico , Motilidad Gastrointestinal/genética , Tracto Gastrointestinal/citología , Ratones , Neurotransmisores/genética
12.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874875

RESUMEN

Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of ß2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.


Asunto(s)
Heterogeneidad Genética , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/genética , Receptores Colinérgicos/genética , Acetilcolina/genética , Humanos , Mutación , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Fenotipo , Transmisión Sináptica
13.
Proc Natl Acad Sci U S A ; 110(51): 20819-24, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297903

RESUMEN

Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells.


Asunto(s)
Acetilcolina/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Acetilcolina/genética , Acetilcolina/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Mutación , Estructura Terciaria de Proteína , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Transducción de Señal/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
14.
Biochem Cell Biol ; 93(1): 47-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25474381

RESUMEN

Neonatal hypoglycemia limits the glucose supply to cells, affecting the function of brain due to its high energy demand. This can cause long-term consequences in brain function, leading to memory and cognitive deficits. The present study evaluated the cholinergic functional regulation in cerebral cortex of one month old rats exposed to neonatal hypoglycemia to understand the long-term effects of early life stress. Receptor binding and gene expression studies were done in the cerebral cortex to analyze the changes in total muscarinicreceptors, muscarinic M1, M2, M3 receptors, and the enzymes involved in acetylcholine metabolism, cholineacetyl transferase and acetylcholine esterase. Neonatal hypoglycemia decreased total muscarinic receptors (p < 0.001) with reduced muscarinic M1, M2, and M3 receptor genes (p < 0.001) in one month old rats. The reduction in acetylcholine metabolism is indicated by the downregulated cholineacetyl transferase, upregulated acetylcholine esterase, and decreased vesicular acetylcholine transporter expression. These alterations in cholinergic function in one month old rat brain indicates the longterm consequences of neonatal hypoglycemia in cortical function, which can contribute to the onset of many disease conditions in later stages of life.


Asunto(s)
Acetilcolina/genética , Glucemia/análisis , Corteza Cerebral/metabolismo , Hipoglucemia/genética , Receptores Muscarínicos/genética , Acetilcolinesterasa/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Diabetes Mellitus Experimental , Expresión Génica , Ratas , Ratas Wistar
15.
Biochim Biophys Acta ; 1818(3): 559-65, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22206629

RESUMEN

The organic cation transporter (OCTN1) plays key roles in transport of selected organic cations, but understanding of its biological functions remains limited by restricted knowledge of its substrate targets. Here we show capacity of human OCTN1-reconstituted proteoliposomes to mediate uptake and efflux of [(3)H]acetylcholine, the Km of transport being 1.0mM with V(max) of 160nmol⋅mg(-1)protein⋅min(-1). OCTN1-mediated transport of this neurotransmitter was time-dependent and was stimulated by intraliposomal ATP. The transporter operates as uniporter but translocates acetylcholine in both directions. [(3)H]acetylcholine uptake was competitively inhibited by tetraethylammonium, γ-butyrobetaine and acetylcarnitine, and was also inhibited by various polyamines. Decreasing intraliposomal ATP concentrations increased OCTN Km for acetylcholine, but V(max) was unaffected. Evaluation of the acetylcholine transporter properties of a variant form of OCTN1, the Crohn's disease-associated 503F variant, revealed time course, Km and V(max) for acetylcholine uptake to be comparable to that of wild-type OCTN1. Km for acetylcholine efflux was also comparable for both OCTN1 species, but V(max) of OCTN1 503F-mediated acetylcholine efflux (1.9nmol⋅mg(-1)protein⋅min(-1)) was significantly lower than that of wild-type OCTN1 (14nmol⋅mg(-1)protein⋅min(-1)). These data identify a new transport role for OCTN1 and raise the possibility that its involvement in the non-neuronal acetylcholine system may be relevant to the pathogenesis of Crohn's disease.


Asunto(s)
Acetilcolina/química , Sustitución de Aminoácidos , Enfermedad de Crohn , Liposomas/química , Mutación Missense , Proteínas de Transporte de Catión Orgánico/química , Acetilcarnitina/química , Acetilcarnitina/farmacología , Acetilcolina/genética , Acetilcolina/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Betaína/análogos & derivados , Betaína/química , Betaína/farmacología , Transporte Biológico Activo/genética , Carnitina/química , Carnitina/farmacología , Catálisis , Humanos , Cinética , Liposomas/metabolismo , Nootrópicos/química , Nootrópicos/farmacología , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Simportadores , Tetraetilamonio/química , Tetraetilamonio/farmacología
16.
Genes Cells ; 17(9): 778-89, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22897658

RESUMEN

Ras-family GTPases regulate a wide variety of cellular functions including cell growth and differentiation. Di-Ras, which belongs to a distinct subfamily of Ras-family GTPases, is expressed predominantly in brain, but the role of Di-Ras in nervous systems remains totally unknown. Here, we report that the Caenorhabditis elegans Di-Ras homologue drn-1 is expressed specifically in neuronal cells and involved in synaptic function at neuromuscular junctions. Loss of function of drn-1 conferred resistance to the acetylcholinesterase inhibitor aldicarb and partially suppressed the aldicarb-hypersensitive phenotypes of heterotrimeric G-protein mutants, in which acetylcholine release is up-regulated. drn-1 mutants displayed no apparent defects in the axonal distribution of the membrane-bound second messenger diacylglycerol (DAG), which is a key stimulator of acetylcholine release. Finally, we have identified EPAC-1, a C. elegans Epac homologue, as a binding partner for DRN-1. Deletion mutants of epac-1 displayed an aldicarb-resistant phenotype as drn-1 mutants. Genetic analysis of drn-1 and epac-1 showed that they acted in the same pathway to control acetylcholine release. Furthermore, DRN-1 and EPAC-1 were co-immunoprecipitated. These findings suggest that DRN-1 may function cooperatively with EPAC-1 to modulate synaptic activity in C. elegans.


Asunto(s)
Caenorhabditis elegans/enzimología , Neuronas Colinérgicas/enzimología , GTP Fosfohidrolasas/metabolismo , Transmisión Sináptica , Acetilcolina/genética , Acetilcolina/metabolismo , Aldicarb/farmacología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Inhibidores de la Colinesterasa/farmacología , Resistencia a Medicamentos , GTP Fosfohidrolasas/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunoprecipitación/métodos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Fenotipo , Mapeo de Interacción de Proteínas , Eliminación de Secuencia
17.
J Physiol ; 590(1): 119-29, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025664

RESUMEN

Acetylcholine receptor-channels (AChRs) mediate fast synaptic transmission between nerve and muscle. In order to better-understand the mechanism by which this protein assembles and isomerizes between closed- and open-channel conformations we measured changes in the diliganded gating equilibrium constant (E(2)) consequent to mutations of residues at the C-terminus of loop 9 (L9) in the α and ε subunits of mouse neuromuscular AChRs. These amino acids are close to two interesting interfaces, between the extracellular and transmembrane domain within a subunit (E­T interface) and between primary and complementary subunits (P­C interface). Most α subunit mutations modestly decreased E(2) (mainly by slowing the channel-opening rate constant) and sometimes produced AChRs that had heterogeneous gating kinetic properties. Mutations in the ε subunit had a larger effect and could either increase or decrease E(2), but did not induce kinetic heterogeneity. There are broad-but-weak energetic interactions between αL9 residues and others at the αE­T interface, as well as between the εL9 residue and others at the P­C interface (in particular, the M2­M3 linker). These interactions serve, in part, to maintain the structural integrity of the AChR assembly at the E­T interface. Overall, the energy changes of L9 residues are significant but smaller than in other regions of the protein.


Asunto(s)
Acetilcolina/genética , Acetilcolina/metabolismo , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Animales , Sitios de Unión , Línea Celular Transformada , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células HEK293 , Humanos , Cinética , Ratones , Conformación Molecular , Músculos/metabolismo , Músculos/fisiología , Mutación Puntual , Estructura Terciaria de Proteína , Subunidades de Proteína
18.
J Biol Chem ; 286(7): 5836-45, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21163949

RESUMEN

Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter (VACHT) as candidate genes, which function together with ChAT in acetylcholine production. Using SH-SY5Y human neuroblastoma cells stably expressing wild-type human ChAT, we found that overexpressed ChAT enhanced transcription of the CHT1 gene but not the VACHT gene. In contrast, nuclear localization signal disrupted, and catalytically inactive mutant ChATs could not induce, CHT1 expression. Additionally, ChAT did not alter CHT1 expression in non-neuronal HEK293 cells. Our results suggest that ChAT activates the transcription of selected target genes in neuronal cells. Both enzymatic activity and nuclear translocation of ChAT are required for its transcriptional enhancement.


Asunto(s)
Núcleo Celular/metabolismo , Colina O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Simportadores/biosíntesis , Transcripción Genética/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/biosíntesis , Acetilcolina/biosíntesis , Acetilcolina/genética , Transporte Activo de Núcleo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Colina O-Acetiltransferasa/genética , Células HEK293 , Humanos , Mutación , Especificidad de Órganos/fisiología , Simportadores/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética
19.
J Biol Chem ; 286(6): 4420-8, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21115477

RESUMEN

Covalent modification of α7 W55C nicotinic acetylcholine receptors (nAChR) with the cysteine-modifying reagent [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET(+)) produces receptors that are unresponsive to acetylcholine, whereas methyl methanethiolsulfonate (MMTS) produces enhanced acetylcholine-gated currents. Here, we investigate structural changes that underlie the opposite effects of MTSET(+) and MMTS using acetylcholine-binding protein (AChBP), a homolog of the extracellular domain of the nAChR. Crystal structures of Y53C AChBP show that MTSET(+)-modification stabilizes loop C in an extended conformation that resembles the antagonist-bound state, which parallels our observation that MTSET(+) produces unresponsive W55C nAChRs. The MMTS-modified mutant in complex with acetylcholine is characterized by a contracted C-loop, similar to other agonist-bound complexes. Surprisingly, we find two acetylcholine molecules bound in the ligand-binding site, which might explain the potentiating effect of MMTS modification in W55C nAChRs. Unexpectedly, we observed in the MMTS-Y53C structure that ten phosphate ions arranged in two rings at adjacent sites are bound in the vestibule of AChBP. We mutated homologous residues in the vestibule of α1 GlyR and observed a reduction in the single channel conductance, suggesting a role of this site in ion permeation. Taken together, our results demonstrate that targeted modification of a conserved aromatic residue in loop D is sufficient for a conformational switch of AChBP and that a defined region in the vestibule of the extracellular domain contributes to ion conduction in anion-selective Cys-loop receptors.


Asunto(s)
Acetilcolina/química , Aplysia/química , Proteínas Portadoras/química , Cisteína/química , Mutación Missense , Acetilcolina/genética , Acetilcolina/metabolismo , Sustitución de Aminoácidos , Animales , Aplysia/genética , Aplysia/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
20.
J Biol Chem ; 286(46): 39860-70, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21937442

RESUMEN

Despite their predicted functional importance, most G protein-coupled receptors (GPCRs) in Caenorhabditis elegans have remained largely uncharacterized. Here, we focused on one GPCR, STR-33, encoded by the str-33 gene, which was discovered through a ligand-based screening procedure. To characterize STR-33 function, we performed UV-trimethylpsolaren mutagenesis and isolated an str-33-null mutant. The resulting mutant showed hypersinusoidal movement and a hyperactive egg-laying phenotype. Two types of egg laying-related mutations have been characterized: egg laying-deficient (Egl-d) and hyperactive egg laying (Egl-c). The defect responsible for the egg laying-deficient Egl-d phenotype is related to Gα(q) signaling, whereas that responsible for the opposite, hyperactive egg-laying Egl-c phenotype is related to Gα(o) signaling. We found that the hyperactive egg-laying defect of the str-33(ykp001) mutant is dependent on the G protein GOA-1/Gα(o). Endogenous acetylcholine suppressed egg laying in C. elegans via a Gα(o)-signaling pathway by inhibiting serotonin biosynthesis or release from the hermaphrodite-specific neuron. Consistent with this, in vivo expression of the serotonin biosynthetic enzyme, TPH-1, was up-regulated in the str-33(ykp001) mutant. Taken together, these results suggest that the GPCR, STR-33, may be one of the neurotransmitter receptors that regulates locomotion and egg laying in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Locomoción/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmisores/metabolismo , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Mutagénesis , Mutación , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmisores/genética , Reproducción/fisiología , Serotonina/biosíntesis , Serotonina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA