Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 13(11): 736-42, 2012 11.
Artículo en Inglés | MEDLINE | ID: mdl-23047735

RESUMEN

Visualizing the dynamic molecular architecture of cells is instrumental for answering fundamental questions in cellular and structural biology. Although modern microscopy techniques, including fluorescence and conventional electron microscopy, have allowed us to gain insights into the molecular organization of cells, they are limited in their ability to visualize multicomponent complexes in their native environment. Cryo-electron tomography (cryo-ET) allows cells, and the macromolecular assemblies contained within, to be reconstructed in situ, at a resolution of 2-6 nm. By combining cryo-ET with super-resolution fluorescence microscopy approaches, it should be possible to localize proteins with high precision inside cells and so elucidate a more realistic view of cellular processes. Thus, cryo-ET may bridge the resolution gap between cellular and structural biology.


Asunto(s)
Células/citología , Células/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Animales , Microscopía por Crioelectrón , Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico/instrumentación , Adhesiones Focales/ultraestructura , Humanos , Sustancias Macromoleculares , Microscopía Fluorescente , Poro Nuclear/ultraestructura
2.
Exp Cell Res ; 403(2): 112613, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901448

RESUMEN

The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasa 3 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
PLoS Genet ; 15(5): e1008083, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31116733

RESUMEN

How biochemical and mechanical information are integrated during tissue development is a central question in morphogenesis. In many biological systems, the PIX-GIT complex localises to focal adhesions and integrates both physical and chemical information. We used Drosophila melanogaster egg chamber formation to study the function of PIX and GIT orthologues (dPix and Git, respectively), and discovered a central role for this complex in controlling myosin activity and epithelial monolayering. We found that Git's focal adhesion targeting domain mediates basal localisation of this complex to filament structures and the leading edge of migrating cells. In the absence of dpix and git, tissue disruption is driven by contractile forces, as reduction of myosin activators restores egg production and morphology. Further, dpix and git mutant eggs closely phenocopy defects previously reported in pak mutant epithelia. Together, these results indicate that the dPix-Git complex controls egg chamber morphogenesis by controlling myosin contractility and Pak kinase downstream of focal adhesions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Activadoras de GTPasa/genética , Morfogénesis/genética , Miosinas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Proteínas Activadoras de GTPasa/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular , Miosinas/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
4.
Nano Lett ; 20(4): 2230-2245, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32142297

RESUMEN

Cellular mechanics play a crucial role in tissue homeostasis and are often misregulated in disease. Traction force microscopy is one of the key methods that has enabled researchers to study fundamental aspects of mechanobiology; however, traction force microscopy is limited by poor resolution. Here, we propose a simplified protocol and imaging strategy that enhances the output of traction force microscopy by increasing i) achievable bead density and ii) the accuracy of bead tracking. Our approach relies on super-resolution microscopy, enabled by fluorescence fluctuation analysis. Our pipeline can be used on spinning-disk confocal or widefield microscopes and is compatible with available analysis software. In addition, we demonstrate that our workflow can be used to gain biologically relevant information and is suitable for fast long-term live measurement of traction forces even in light-sensitive cells. Finally, using fluctuation-based traction force microscopy, we observe that filopodia align to the force field generated by focal adhesions.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Fenómenos Biomecánicos , Línea Celular Tumoral , Adhesiones Focales/ultraestructura , Humanos , Microscopía de Fuerza Atómica/instrumentación , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Seudópodos/ultraestructura
5.
Am J Physiol Endocrinol Metab ; 318(6): E930-E942, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32343611

RESUMEN

Preterm birth is one of the most common complications during human pregnancy and is associated with a dramatic switch within the uterus from quiescence to contractility. However, the mechanisms underlying uterine remodeling are largely unknown. Protein kinases and phosphatases play critical roles in regulating the phosphorylation of proteins involved in the smooth muscle cell functions. In the present study, we found that Src-homology phosphatase type-1 (SHP-1, PTPN6) was significantly decreased in human myometrium in labor compared with that not in labor. Timed-pregnant mice injected intraperitoneally with the specific SHP-1 inhibitor protein tyrosine phosphatase inhibitor I (PTPI-1) manifested significantly preterm labor, with enriched plasmalemmal dense plaques between myometrial cells and increased phosphorylation at Tyr397 and Tyr576/577 sites of focal adhesion kinase (FAK) in myometrial cells, which remained to the time of labor, whereas the phosphorylation levels of ERK1/2 and phosphatidylinositol 3 kinase (PI3K) showed a rapid increase upon PTPI-1 injection but fell back to normal at the time of labor. The Tyr576/577 in FAK played an important role in the interaction between FAK and SHP-1. Knockdown of SHP-1 dramatically increased the spontaneous contraction of human uterine smooth muscle cells (HUSMCs), which was reversed by coinfection of a FAK-knockdown lentivirus. PGF2α downregulated SHP-1 via PLCß-PKC-NF-κB or PI3K-NF-κB pathways, suggesting the regenerative downregulation of SHP-1 enhances the uterine remodeling and plasticity by activating FAK and subsequent focal adhesion pathway, which eventually facilitates myometrium contraction and leads to labor. The study sheds new light on understanding of mechanisms that underlie the initiation of labor, and interventions for modulation of SHP-1 may provide a potential strategy for preventing preterm birth.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Trabajo de Parto/metabolismo , Miocitos del Músculo Liso/metabolismo , Miometrio/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Adulto , Animales , Dinoprost/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Adhesiones Focales/ultraestructura , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/ultraestructura , Miometrio/citología , Miometrio/efectos de los fármacos , Miometrio/ultraestructura , FN-kappa B/metabolismo , Trabajo de Parto Prematuro , Oxitócicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C beta/metabolismo , Embarazo , Proteína Quinasa C/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores
6.
FASEB J ; 33(10): 10618-10632, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31225977

RESUMEN

Biomechanical cues within tissue microenvironments are critical for maintaining homeostasis, and their disruption can contribute to malignant transformation and metastasis. Once transformed, metastatic cancer cells can migrate persistently by adapting (plasticity) to changes in the local fibrous extracellular matrix, and current strategies to recapitulate persistent migration rely exclusively on the use of aligned geometries. Here, the controlled interfiber spacing in suspended crosshatch networks of nanofibers induces cells to exhibit plasticity in migratory behavior (persistent and random) and the associated cytoskeletal arrangement. At dense spacing (3 and 6 µm), unexpectedly, elongated cells migrate persistently (in 1 dimension) at high speeds in 3-dimensional shapes with thick nuclei, and short focal adhesion cluster (FAC) lengths. With increased spacing (18 and 36 µm), cells attain 2-dimensional morphologies, have flattened nuclei and longer FACs, and migrate randomly by rapidly detaching their trailing edges that strain the nuclei by ∼35%. At 54-µm spacing, kite-shaped cells become near stationary. Poorly developed filamentous actin stress fibers are found only in cells on 3-µm networks. Gene-expression profiling shows a decrease in transcriptional potential and a differential up-regulation of metabolic pathways. The consistency in observed phenotypes across cell lines supports using this platform to dissect hallmarks of plasticity in migration in vitro.-Jana, A., Nookaew, I., Singh, J., Behkam, B., Franco, A. T., Nain, A. S. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response.


Asunto(s)
Movimiento Celular/fisiología , Citoesqueleto/fisiología , Citoesqueleto de Actina/fisiología , Citoesqueleto de Actina/ultraestructura , Animales , Fenómenos Biomecánicos , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/ultraestructura , Microambiente Celular/genética , Microambiente Celular/fisiología , Citoesqueleto/ultraestructura , Matriz Extracelular/fisiología , Matriz Extracelular/ultraestructura , Adhesiones Focales/fisiología , Adhesiones Focales/ultraestructura , Expresión Génica , Humanos , Células Madre Mesenquimatosas/fisiología , Células Madre Mesenquimatosas/ultraestructura , Ratones , Modelos Biológicos , Nanofibras/ultraestructura
7.
Semin Cell Dev Biol ; 67: 141-152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27641825

RESUMEN

Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states.


Asunto(s)
Neoplasias de la Mama/genética , Cadherinas/genética , Proteínas Contráctiles/genética , Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Mecanotransducción Celular , Adaptación Fisiológica , Animales , Fenómenos Biomecánicos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Proteínas Contráctiles/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Regulación de la Expresión Génica , Homeostasis , Humanos , Glándulas Mamarias Humanas/citología , Estrés Mecánico
8.
Biochem Biophys Res Commun ; 511(2): 374-380, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30782481

RESUMEN

Researches have shown that mice lacking the metabotropic glutamate receptor 1 (mGluR) showed albuminuria, remodeling of F-actin, with loss of stress fibers. Selective group I mGluRs agonist (S)-3,5-dihydroxyphenylglycine (DHPG) attenuated albuminuria in several rodent models of nephrotic syndrome. However, the molecular mechanism is obscure. Using a human podocyte cell line, we here investigated the molecular mechanisms of group I mGluRs-induced calcium influx and the formation of stress fibers. Our data showed that group I mGluRs activation by DHPG induced a significant calcium influx, and promoted cytoskeletal stress fiber formation and focal adhesions in podocytes. Pre-incubating podocytes with non-selective inhibitor of transient receptor potential channels (TRPC), or the knockdown of TRPC6 attenuated the calcium influx and the stress fiber formation induced by DHPG. Further, DHPG resulted in an increase of active RhoA expression. However, the knockdown of RhoA by siRNA abolished the DHPG-induced increase in stress fibers. Additionally, nonselective inhibitors of TRPC or TRPC6 knockdown clearly inhibited RhoA activation induced by DHPG, as assessed by Glutathione-S-transferase pull-down assay followed by Western blotting. Taken together, our findings suggest TRPC6 regulates actin stress fiber formation and focal adhesions via the RhoA pathway in response to group I mGluRs activation. Our data can potentially explain the mechanism of protective action of group I mGluRs in glomerular podocyte injury.


Asunto(s)
Calcio/metabolismo , Podocitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Canal Catiónico TRPC6/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Humanos , Podocitos/ultraestructura , Receptores de Glutamato Metabotrópico/ultraestructura , Fibras de Estrés/metabolismo , Fibras de Estrés/ultraestructura
9.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 580-593, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28011283

RESUMEN

The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Citoesqueleto de Actina/ultraestructura , Animales , Fenómenos Biomecánicos , Adhesión Celular , Técnicas de Cultivo de Célula , Movimiento Celular , Módulo de Elasticidad , Matriz Extracelular/ultraestructura , Fibroblastos/ultraestructura , Adhesiones Focales/ultraestructura , Expresión Génica , Ratones , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal , Estrés Mecánico
10.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 12-22, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27773611

RESUMEN

Tumor cells translocating to distant sites are subjected to hemodynamic shear forces during their passage in the blood vessels. Low shear stress (LSS) plays a critical role in the regulation of various aspects of tumor cells functions, including motility and adhesion. Beyond its structural role, caveolin-1 (Cav-1), the important component of caveolae, represents a modulator of several cancer-associated functions as tumor progression and metastasis. However, the role of Cav-1 in regulating tumor cells response to shear stress remains poorly explored. Here, we characterized the role of LSS and Cav-1 in mediating cell motility and adhesion on human breast carcinoma MDA-MB-231 cells. We first showed that LSS exposure promoted cell polarity and focal adhesion (FA) dynamics, thus indicating elevated cell migration. Silencing of Cav-1 leaded to a significantly lower formation of stress fibers. However, LSS exposure was able to rescue it via the alteration of actin-associated proteins expression, including ROCK, p-MLC, cofilin and filamin A. Time-lapse migration assay indicated that Cav-1 expression fostered MDA-MB-231 cells motility and LSS triggered cells to rapidly generate new lamellipodia. Furthermore, Cav-1 and LSS significantly influenced cell adhesion. Taken together, our findings provide insights into mechanisms underlying LSS triggered events mediated by downstream Cav-1, including FAK/Src and ROCK/p-MLC pathways, involved in the reorganization of the cytoskeleton, cell motility, FA dynamics and breast cancer cell adhesion.


Asunto(s)
Caveolina 1/genética , Células Epiteliales/metabolismo , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Quinasas Asociadas a rho/genética , Familia-src Quinasas/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Fenómenos Biomecánicos , Caveolina 1/antagonistas & inhibidores , Caveolina 1/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Células Epiteliales/patología , Filaminas/genética , Filaminas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Proteínas de la Membrana/metabolismo , Seudópodos/metabolismo , Seudópodos/ultraestructura , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Estrés Mecánico , Quinasas Asociadas a rho/metabolismo , Familia-src Quinasas/metabolismo
11.
Cell Physiol Biochem ; 51(3): 1013-1026, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30476913

RESUMEN

BACKGROUND/AIMS: Osteocytes can sense and respond to extracellular stimuli, including biochemical factors throughout the cell body, dendritic processes, and cilia bending. However, further exploration is required of osteocyte function in response to substrate stiffness, an important passive mechanical cue at the interface between osteocytes and the extracellular matrix, and the deep bio-mechanism in osteocytes involving mechanosensing of cell behavior. METHODS: We fabricated silicon-based elastomer polydimethylsiloxane substrates with different stiffnesses but with the same surface topologies. We then seeded osteocytes onto the substrates to examine their responses. Methodologies used included scanning electron microscopy (SEM) for cell morphology, confocal laser scanning microscopy (CLSM) for protein distribution, western blot for protein levels, co-immunoprecipitation for protein interactions, and quantitative real-time polymerase chain reaction for gene expression. RESULTS: SEM images revealed that substrate stiffness induced a change in osteocyte morphology, and CLSM of F-actin staining revealed that substrate stiffness can alter the cytoskeleton. These results were accompanied by changes in focal adhesion capacity in osteocytes, determined via characterization of vinculin expression and distribution. Furthermore, on the exterior of the cell membrane, fibronectin was altered by substrate stiffness. The fibronectin then induced a change in paxillin on the inner membrane of the cell via protein-protein interaction through transmembrane processing. Paxillin led to changes in connexin 43 via protein-protein binding, thereby influencing osteocyte gap junction elongation. CONCLUSION: This process -from mechanosensing and mechanotransduction to cell function - not only indicates that the effects of mechanical factors on osteocytes can be directly sensed from the cell body, but also indicates the involvement of paxillin transduction.


Asunto(s)
Matriz Extracelular/metabolismo , Uniones Comunicantes/metabolismo , Osteocitos/metabolismo , Paxillin/metabolismo , Transducción de Señal , Animales , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular , Conexina 43/análisis , Conexina 43/metabolismo , Módulo de Elasticidad , Matriz Extracelular/ultraestructura , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Uniones Comunicantes/ultraestructura , Mecanotransducción Celular , Ratones , Osteocitos/citología , Osteocitos/ultraestructura , Paxillin/análisis
12.
Biochem J ; 474(16): 2841-2859, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694353

RESUMEN

Here, we report that a centrosomal protein FOR20 [FOP (FGFR1 (fibroblast growth factor receptor 1) oncogene protein)-like protein of molecular mass of 20 kDa; also named as C16orf63, FLJ31153 or PHSECRG2] can regulate the assembly and stability of microtubules. Both FOR20 IgG antibody and GST (glutathione S-transferase)-tagged FOR20 could precipitate tubulin from the HeLa cell extract, indicating a possible interaction between FOR20 and tubulin. FOR20 was also detected in goat brain tissue extract and it cycled with microtubule-associated proteins. Furthermore, FOR20 bound to purified tubulin and inhibited the assembly of tubulin in vitro. The overexpression of FOR20 depolymerized interphase microtubules and the depletion of FOR20 prevented nocodazole-induced depolymerization of microtubules in HeLa cells. In addition, the depletion of FOR20 suppressed the dynamics of individual microtubules in live HeLa cells. FOR20-depleted MDA-MB-231 cells displayed zigzag motion and migrated at a slower rate than the control cells, indicating that FOR20 plays a role in directed cell migration. The results suggested that the centrosomal protein FOR20 is a new member of the microtubule-associated protein family and that it regulates the assembly and dynamics of microtubules.


Asunto(s)
Cilios/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , Factores de Transcripción/genética , Tubulina (Proteína)/genética , Animales , Química Encefálica , Línea Celular Tumoral , Movimiento Celular , Cilios/ultraestructura , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Cabras , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células 3T3 NIH , Nocodazol/farmacología , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo
13.
Biosci Biotechnol Biochem ; 81(6): 1136-1147, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28485208

RESUMEN

Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. However, the mechanism how vinculin-vinexin α interaction affects stiffness-dependent cell migration is unclear. Lipid rafts are membrane microdomains that are known to affect ECM-induced signals and cell behaviors. Here, we show that vinculin and vinexin α can localize to lipid rafts. Cell-ECM adhesion, intracellular tension, and a rigid ECM promote vinculin distribution to lipid rafts. The disruption of lipid rafts with Methyl-ß-cyclodextrin impaired the ECM stiffness-mediated regulation of vinculin behavior and rapid cell migration on rigid ECM. These results indicate that lipid rafts play an important role in ECM-stiffness regulation of cell migration via vinculin.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Musculares/metabolismo , Vinculina/metabolismo , Animales , Fenómenos Biomecánicos , Caveolina 1/genética , Caveolina 1/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Embrión de Mamíferos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/ultraestructura , Regulación de la Expresión Génica , Dureza , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Musculares/genética , Paxillin/genética , Paxillin/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal , Vinculina/genética , beta-Ciclodextrinas/farmacología
14.
Biochem J ; 473(12): 1791-803, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095850

RESUMEN

Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic ß-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes.


Asunto(s)
Actinas/metabolismo , Adhesiones Focales/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Secretagoginas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/ultraestructura , Glucosa/farmacología , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Paxillin/metabolismo , Cloruro de Potasio/farmacología , Unión Proteica , Secretagoginas/genética
15.
J Biol Chem ; 290(1): 478-91, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25391654

RESUMEN

Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr(925) facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr(925) phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr(861), located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser(910) by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.


Asunto(s)
Fibroblastos/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/química , Adhesiones Focales/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Células COS , Chlorocebus aethiops , Escherichia coli/genética , Escherichia coli/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/ultraestructura , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Paxillin/genética , Paxillin/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Células Sf9 , Spodoptera
16.
Cell Physiol Biochem ; 39(5): 1761-1776, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27744434

RESUMEN

BACKGROUND/AIMS: Individuals possessing a single kidney are at greater risk of renal injury upon exposure to harmful stimuli. This study aimed to explore the pathogenesis of renal injury in glomerulonephritis with versus without unilateral nephrectomy (UNX). METHODS: Histological analysis and label-free quantitative proteomics were performed on two models-the Habu snake venom-induced glomerulonephritis model with versus without UNX (HabuU and Habu models, respectively). The role of villin 1, a differentially expressed protein (DEP) in mouse mesangial cells, was investigated. RESULTS: Persistent mesangiolysis and focal hypercellularity together with reduced activation of cell proliferation in the HabuU model induced more serious renal injury compared with that in the Habu model. The DEPs between the two models were identified by label-free liquid chromatography-mass spectrometry. The KEGG pathway results indicated that regulation of actin cytoskeleton and focal adhesion were specifically enriched in the HabuU model. The cytoskeleton regulation protein villin 1 was downregulated in the HabuU model, but unchanged in the Habu model. Knockdown of villin 1 promoted apoptosis and inhibited the proliferation of mouse mesangial cells, suggesting villin 1 to be involved in qlomerular lesion self-repair insufficiency. CONCLUSION: By assessing the proteomic profiles of the two models, this study identified several important differences, particularly villin 1 expression, in regulatory mechanisms between the two models. Our findings provide novel insight into the mechanism of serious renal injury in glomerulonephritis with UNX.


Asunto(s)
Mesangio Glomerular/metabolismo , Glomerulonefritis/genética , Células Mesangiales/metabolismo , Nefrectomía , Proteómica , Venenos de Serpiente/toxicidad , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mesangio Glomerular/efectos de los fármacos , Mesangio Glomerular/cirugía , Mesangio Glomerular/ultraestructura , Glomerulonefritis/inducido químicamente , Glomerulonefritis/patología , Glomerulonefritis/cirugía , Humanos , Masculino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/ultraestructura , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Anotación de Secuencia Molecular , Cultivo Primario de Células
17.
Mol Cell ; 32(1): 43-56, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18851832

RESUMEN

Mixed lineage kinase 3 (MLK3) is a MAP3K that activates the JNK-dependent MAPK pathways. Here, we show that MLK3 is required for cell migration in a manner independent of its role as a MAP3K or MLK3 kinase activity. Rather, MLK3 functions in a regulated way to limit levels of the activated GTPase Rho by binding to the Rho activator, p63RhoGEF/GEFT, which, in turn, prevents its activation by Galphaq. These findings demonstrate a scaffolding role for MLK3 in controlling the extent of Rho activation that modulates cell migration. Moreover, they suggest that MLK3 functions as a network hub that links a number of signaling pathways.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular , Movimiento Celular/fisiología , Citoesqueleto/ultraestructura , Adhesiones Focales/ultraestructura , Humanos , Técnicas In Vitro , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Unión Proteica , Seudópodos/ultraestructura , ARN Interferente Pequeño/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
18.
Adv Exp Med Biol ; 936: 73-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27739043

RESUMEN

The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.


Asunto(s)
Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Modelos Estadísticos , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Comunicación Celular , Movimiento Celular , Colágeno/metabolismo , Matriz Extracelular/patología , Matriz Extracelular/ultraestructura , Adhesiones Focales/patología , Adhesiones Focales/ultraestructura , Humanos , Ratones , Invasividad Neoplásica , Neoplasias/patología , Neoplasias/ultraestructura , Células Neoplásicas Circulantes/patología , Microambiente Tumoral
19.
J Cell Sci ; 126(Pt 14): 3021-30, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23687380

RESUMEN

Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell-ECM interface. Although it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force.


Asunto(s)
Adhesión Celular , Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Fibras de Estrés/metabolismo , Vinculina/metabolismo , Fenómenos Biomecánicos , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Polaridad Celular/efectos de la radiación , Forma de la Célula/efectos de la radiación , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/efectos de la radiación , Adhesiones Focales/ultraestructura , Humanos , Terapia por Láser , Modelos Biológicos , Transporte de Proteínas/efectos de la radiación , Fibras de Estrés/química , Fibras de Estrés/efectos de la radiación , Vinculina/química
20.
Biochem Biophys Res Commun ; 461(2): 372-7, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25911321

RESUMEN

Cells sense physical cues at the level of focal adhesions and transduce them to the nucleus by biochemical and mechanical pathways. While the molecular intermediates in the mechanical links have been well studied, their dynamic coupling is poorly understood. In this study, fibroblast cells were adhered to micropillar arrays to probe correlations in the physical coupling between focal adhesions and nucleus. For this, we used novel imaging setup to simultaneously visualize micropillar deflections and EGFP labeled chromatin structure at high spatial and temporal resolution. We observed that micropillar deflections, depending on their relative positions, were positively or negatively correlated to nuclear and heterochromatin movements. Our results measuring the time scales between micropillar deflections and nucleus centroid displacement are suggestive of a strong elastic coupling that mediates differential force transmission to the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Fibroblastos/citología , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Animales , Adhesión Celular , Núcleo Celular/ultraestructura , Elasticidad , Diseño de Equipo , Adhesiones Focales/ultraestructura , Ratones , Microscopía Confocal/instrumentación , Células 3T3 NIH , Imagen Óptica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA