Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Cell Mol Med ; 23(11): 7246-7260, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31454154

RESUMEN

Emerging evidence indicates that fibroblast-specific protein 1 (FSP1) provides vital effects in cell biofunctions. However, whether FSP1 influences the adventitial fibroblast (AF) and vascular remodelling remains unclear. Therefore, we investigated the potential role and action mechanism of FSP1-mediated AF bioactivity. AFs were cultured and stimulated with FSP1 and siRNA-FSP1 in vitro. Viability assays demonstrated that siRNA-FSP1 counteracted AFs proliferative, migratory and adherent abilities enhanced with FSP1. Flow cytometry revealed that FSP1 increased AFs number in S phase and decreased cellular apoptosis. Contrarily, siRNA-FSP1 displayed the contrary results. RT-PCR, Western blotting and immunocytochemistry showed that FSP1 synchronously up-regulated the expression of molecules in RAGE, JAK2/STAT3 and Wnt3a/ß-catenin pathways and induced a proinflammatory cytokine profile characterized by high levels of MCP-1, ICAM-1 and VCAM-1. Conversely, FSP1 knockdown reduced the expression of these molecules and cytokines. The increased number of autophagosomes in FSP1-stimulated group and fewer autophagic corpuscles in siRNA-FSP1 group was observed by transmission electron microscope (TEM). Autophagy-related proteins (LC3B, beclin-1 and Apg7) were higher in FSP1 group than those in other groups. Conversely, the expression of p62 protein was shown an opposite trend of variation. Therefore, these pathways can promote AFs bioactivity, facilitate autophagy and induce the expression of the proinflammatory cytokines. Contrarily, siRNA-FSP1 intercepts the crosstalk of these pathways, suppresses AF functions, restrains autophagy and attenuates the expression of the inflammatory factors. Our findings indicate that crosstalk among RAGE, STAT3/JAK2 and Wnt3a/ß-catenin signalling pathways may account for the mechanism of AF functions with the stimulation of FSP1.


Asunto(s)
Adventicia/fisiología , Antígenos de Neoplasias/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fibroblastos/fisiología , Janus Quinasa 2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Adventicia/citología , Antígenos de Neoplasias/genética , Apoptosis , Proteínas de Unión al Calcio/genética , Adhesión Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Humanos , Janus Quinasa 2/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteína de Unión al Calcio S100A4 , Factor de Transcripción STAT3/genética , Transducción de Señal , Proteína Wnt3A/genética , beta Catenina/genética
2.
Circ Res ; 120(2): 296-311, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27834190

RESUMEN

RATIONALE: The vascular adventitia is a complex layer of the vessel wall consisting of vasa vasorum microvessels, nerves, fibroblasts, immune cells, and resident progenitor cells. Adventitial progenitors express the stem cell markers, Sca1 and CD34 (adventitial sca1-positive progenitor cells [AdvSca1]), have the potential to differentiate in vitro into multiple lineages, and potentially contribute to intimal lesions in vivo. OBJECTIVE: Although emerging data support the existence of AdvSca1 cells, the goal of this study was to determine their origin, degree of multipotency and heterogeneity, and contribution to vessel remodeling. METHODS AND RESULTS: Using 2 in vivo fate-mapping approaches combined with a smooth muscle cell (SMC) epigenetic lineage mark, we report that a subpopulation of AdvSca1 cells is generated in situ from differentiated SMCs. Our data establish that the vascular adventitia contains phenotypically distinct subpopulations of progenitor cells expressing SMC, myeloid, and hematopoietic progenitor-like properties and that differentiated SMCs are a source to varying degrees of each subpopulation. SMC-derived AdvSca1 cells exhibit a multipotent phenotype capable of differentiating in vivo into mature SMCs, resident macrophages, and endothelial-like cells. After vascular injury, SMC-derived AdvSca1 cells expand in number and are major contributors to adventitial remodeling. Induction of the transcription factor Klf4 in differentiated SMCs is essential for SMC reprogramming in vivo, whereas in vitro approaches demonstrate that Klf4 is essential for the maintenance of the AdvSca1 progenitor phenotype. CONCLUSIONS: We propose that generation of resident vascular progenitor cells from differentiated SMCs is a normal physiological process that contributes to the vascular stem cell pool and plays important roles in arterial homeostasis and disease.


Asunto(s)
Adventicia/citología , Adventicia/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Femenino , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocitos del Músculo Liso/fisiología , Embarazo
3.
J Vasc Surg ; 67(1): 309-317.e7, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526559

RESUMEN

BACKGROUND: Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cell-cycle inhibitor whose -838C>A single nucleotide polymorphism (rs36228499; hereafter called p27 SNP) has been associated with the clinical failure of peripheral vein grafts, but the functional effects of this SNP have not been demonstrated. METHODS: Human saphenous vein adventitial cells and intimal/medial smooth muscle cells (SMCs) were derived from explants obtained at the time of lower extremity bypass operations. We determined the following in adventitial cells and SMCs as a function of the p27 SNP genotype: (1) p27 promoter activity, (2) p27 messenger (m)RNA and protein levels, and (3) growth and collagen gel contraction. Deoxyribonuclease I footprinting was also performed in adventitial cells and SMCs. RESULTS: p27 promoter activity, deoxyribonuclease I footprinting, p27 mRNA levels, and p27 protein levels demonstrated that the p27 SNP is functional in adventitial cells and SMCs. Both cell types with the graft failure protective AA genotype had more p27 mRNA and protein. As predicted because of higher levels of p27 protein, adventitial cells with the AA genotype grew slower than those of the CC genotype. Unexpectedly, SMCs did not show this genotype-dependent growth response. CONCLUSIONS: These results support the functionality of the p27 SNP in venous SMCs and adventitial cells, but an effect of the SNP on cell proliferation is limited to only adventitial cells. These data point to a potential role for adventitial cells in human vein graft failure and also suggest that SMCs express factors that interfere with the activity of p27.


Asunto(s)
Adventicia/fisiología , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Rechazo de Injerto/genética , Miocitos del Músculo Liso/fisiología , Vena Safena/trasplante , Injerto Vascular/efectos adversos , Adventicia/citología , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Vena Safena/citología , Túnica Íntima/citología , Túnica Íntima/fisiología
4.
Sheng Li Xue Bao ; 70(2): 211-216, 2018 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-29691586

RESUMEN

As an important site for the production, storage and release of key regulators for vascular function, the vascular adventitia is thought to be a damage sensing tissue in the vascular wall under certain conditions. The adventitial cells are usually the first ones to respond to vascular stress or injury, and consequently affect the structure and function of blood vessel wall. Growing lines of evidence have shown that the vascular adventitia exhibits the earliest and most prominent changes in vascular remodeling due to hypoxia and related pulmonary hypertension and atherosclerosis. In particular, fibroblasts play an important role in the adaptation and regulation to local microenvironmental changes. This review focuses on the role of vascular adventitia in hypoxia-induced vascular remodeling and the underlying molecular mechanisms.


Asunto(s)
Adventicia/fisiología , Fibroblastos/fisiología , Hipoxia/fisiopatología , Remodelación Vascular , Animales , Aterosclerosis , Humanos , Hipertensión Pulmonar
5.
Annu Rev Physiol ; 75: 23-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23216413

RESUMEN

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Asunto(s)
Adventicia/fisiología , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Adventicia/citología , Animales , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Células Madre/citología , Células Madre/fisiología , Estrés Fisiológico/fisiología , Vasa Vasorum/citología , Vasa Vasorum/fisiología
6.
Anal Biochem ; 499: 71-77, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26820096

RESUMEN

Resistance arteries have been implicated as a major contributing factor in the sequela of disease conditions such as hypertension and diabetes and, as such, are a major focus of cardiovascular research. The paracrine influence of the intimal endothelial layer of resistance arteries is well established. Considering the growing body of evidence substantiating a functionally relevant vascular adventitia, in this study we have established a technique that permits determination of the functional influence of the adventitial layer on resistance artery tone. Isolating adventitial-dependent function, analogous to isolating endothelial function, has potentially significant implications for studying the as yet unexplored role of the microvascular adventitial layer in modulating acute vascular contractile function.


Asunto(s)
Técnicas de Ablación , Adventicia/fisiología , Adventicia/cirugía , Microcirculación , Vasoconstricción , Animales , Endotelio Vascular/fisiología , Endotelio Vascular/cirugía , Masculino , Ratas , Ratas Sprague-Dawley
7.
J Mech Behav Biomed Mater ; 141: 105752, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893688

RESUMEN

The arterial wall's tri-layered macroscopic and layer-specific microscopic structure determine its mechanical properties, which vary at different arterial locations. Combining layer-specific mechanical data and tri-layered modelling, this study aimed to characterise functional differences between the pig ascending (AA) and lower thoracic aorta (LTA). AA and LTA segments were obtained for n=9 pigs. For each location, circumferentially and axially oriented intact wall and isolated layer strips were tested uniaxially and the layer-specific mechanical response modelled using a hyperelastic strain energy function. Then, layer-specific constitutive relations and intact wall mechanical data were combined to develop a tri-layered model of an AA and LTA cylindrical vessel, accounting for the layer-specific residual stresses. AA and LTA behaviours were then characterised for in vivo pressure ranges while stretched axially to in vivo length. The media dominated the AA response, bearing>2/3 of the circumferential load both at physiological (100 mmHg) and hypertensive pressures (160 mmHg). The LTA media bore most of the circumferential load at physiological pressure only (57±7% at 100 mmHg), while adventitia and media load bearings were comparable at 160 mmHg. Furthermore, increased axial elongation affected the media/adventitia load-bearing only at the LTA. The pig AA and LTA presented strong functional differences, likely reflecting their different roles in the circulation. The media-dominated compliant and anisotropic AA stores large amounts of elastic energy in response to both circumferential and axial deformations, which maximises diastolic recoiling function. This function is reduced at the LTA, where the adventitia shields the artery against supra-physiological circumferential and axial loads.


Asunto(s)
Adventicia , Aorta Torácica , Porcinos , Animales , Aorta Torácica/fisiología , Estrés Mecánico , Fenómenos Biomecánicos , Adventicia/fisiología
8.
J Cell Mol Med ; 16(12): 2851-60, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22882758

RESUMEN

Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRß, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte-like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured.


Asunto(s)
Tejido Adiposo/citología , Adventicia/citología , Células Madre Mesenquimatosas/fisiología , Pericitos/fisiología , Medicina Regenerativa , Adventicia/fisiología , Antígenos/metabolismo , Biomarcadores/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular , Linaje de la Célula , Trasplante de Células , Células Cultivadas , Humanos , Proteínas de la Membrana , Pericitos/trasplante , Proteoglicanos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
9.
Biochem Pharmacol ; 205: 115259, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150432

RESUMEN

The adventitia receives input signals from the vessel wall, the immune system, perivascular nerves and from surrounding tissues to generate effector responses that regulate structural and mechanical properties of blood vessels. It is a complex and dynamic tissue that orchestrates multiple functions for vascular development, homeostasis, repair, and disease. The purpose of this review is to highlight recent advances in our understanding of the origins, phenotypes, and functions of adventitial and perivascular cells with particular emphasis on hypertensive vascular remodeling.


Asunto(s)
Adventicia , Hipertensión , Humanos , Adventicia/fisiología , Arterias
10.
J Biomech ; 132: 110909, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032837

RESUMEN

We analyze the residual stresses and mechanical properties of layer-dissected infrarenal abdominal aorta (IAA). We measured the axial pre-stretch and opening angle and performed uniaxial tests to study and compare the mechanical behavior of both intact and layer-dissected porcine IAA samples under physiological loads. Finally, some of the most popular anisotropic hyperelastic constitutive models (GOH and microfiber models) were proposed to estimate the mechanical properties of the abdominal aorta by least-square fitting of the recorded in-vitro uniaxial test results. The results show that the residual stresses are layer dependent. In all cases, we found that the OA in the media layer is lower than in the whole artery, the intima and the adventitia. For the axial pre-stretch, we found that the adventitia and the media were slightly stretched in the environment of the intact arterial strip, whereas the intima appears to be compressed. Regarding the mechanical properties, the media seems to be the softest layer over the whole deformation domain showing high anisotropy, while the intima and adventitia exhibit considerable stiffness and a lower anisotropy response. Finally, all the hyperelastic anisotropic models considered in this study provided a reasonable approximation of the experimental data. The GOH model showed the best fitting.


Asunto(s)
Adventicia , Aorta Abdominal , Adventicia/fisiología , Animales , Anisotropía , Fenómenos Biomecánicos , Estrés Mecánico , Porcinos
11.
Biomech Model Mechanobiol ; 21(1): 135-146, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34622379

RESUMEN

The objective is to know the stress distributions in the arterial walls under residual stresses based on two-layer model. Human common carotid arteries were analysed to show stress distributions at physiological and supraphysiological intraluminal pressures. The analyses for the loaded states were performed with stretch ratios with reference to a Riemannian stress-free configuration which is a 3D non-Euclidean manifold due to the nonzero Riemann curvature tensor. The experimental data obtained by other literature were used for the common carotid arteries to analyse the stretch and stress distributions in the arterial wall although kinematics is different from the literature. The stretches and stresses were calculated for the unloaded state, i.e. the residual stretches and stresses. And those at the axial stretch ratio 1.1 with reference to the unloaded state were calculated at the intraluminal pressures 16, 50, and 100 kPa. The stresses increased from the inner surface to the outer surface at all pressures analysed. These results suggest that in the human arteries the mechanical loads are mainly supported with the adventitia even though the media and intima play an important role to control of physiological functions.


Asunto(s)
Adventicia , Arteria Carótida Común , Adventicia/fisiología , Fenómenos Biomecánicos/fisiología , Humanos , Modelos Cardiovasculares , Presión , Estrés Mecánico
12.
J Zhejiang Univ Sci B ; 22(8): 647-663, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34414700

RESUMEN

Interstitial fluid (ISF) flow through vascular adventitia has been discovered recently. However, its kinetic pattern was unclear. We used histological and topographical identification to observe ISF flow along venous vessels in rabbits. By magnetic resonance imaging (MRI) in live subjects, the inherent pathways of ISF flow from the ankle dermis through the legs, abdomen, and thorax were enhanced by paramagnetic contrast. By fluorescence stereomicroscopy and layer-by-layer dissection after the rabbits were sacrificed, the perivascular and adventitial connective tissues (PACTs) along the saphenous veins and inferior vena cava were found to be stained by sodium fluorescein from the ankle dermis, which coincided with the findings by MRI. The direction of ISF transport in a venous PACT pathway was the same as that of venous blood flow. By confocal microscopy and histological analysis, the stained PACT pathways were verified to be the fibrous connective tissues, consisting of longitudinally assembled fibers. Real-time observations by fluorescence stereomicroscopy revealed at least two types of spaces for ISF flow: one along adventitial fibers and another one between the vascular adventitia and its covering fascia. Using nanoparticles and surfactants, a PACT pathway was found to be accessible by a nanoparticle of <100 nm and contained two parts: a transport channel and an absorptive part. The calculated velocity of continuous ISF flow along fibers of the PACT pathway was 3.6‒15.6 mm/s. These data revealed that a PACT pathway was a "slit-shaped" porous biomaterial, comprising a longitudinal transport channel and an absorptive part for imbibition. The use of surfactants suggested that interfacial tension might play an essential role in layers of continuous ISF flow along vascular vessels. A hypothetical "gel pump" is proposed based on interfacial tension and interactions to regulate ISF flow. These experimental findings may inspire future studies to explore the physiological and pathophysiological functions of vascular ISF or interfacial fluid flow among interstitial connective tissues throughout the body.


Asunto(s)
Adventicia/fisiología , Líquido Extracelular/fisiología , Animales , Transporte Biológico , Vasos Linfáticos/fisiología , Imagen por Resonancia Magnética , Conejos
13.
Math Med Biol ; 38(1): 59-82, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814945

RESUMEN

In 1987, Seymour Glagov observed that arteries went through a two-stage remodeling process as a result of plaque growth: first, a compensatory phase where the lumen area remains approximately constant and second, an encroachment phase where the lumen area decreases over time. In this paper, we investigate the effect of growth anisotropy on Glagov remodeling in five different cases: pure radial, pure circumferential, pure axial, isotropic and general anisotropic growth where the elements of the growth tensor are chosen to minimize the total energy. We suggest that the nature of anisotropy is inclined towards the growth direction that requires the least amount of energy. Our framework is the theory of morphoelasticity on an axisymmetric arterial domain. For each case, we explore their specific effect on the Glagov curves. For the latter two cases, we also provide the changes in collagen fiber orientation and length in the intima, media and adventitia. In addition, we compare the total energy produced by growth in radial, circumferential and axial direction and deduce that using a radially dominant anisotropic growth leads to lower strain energy than isotropic growth.


Asunto(s)
Aterosclerosis/etiología , Modelos Cardiovasculares , Remodelación Vascular/fisiología , Adventicia/fisiología , Adventicia/fisiopatología , Arterias/patología , Arterias/fisiopatología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Fenómenos Biomecánicos , Colágeno/metabolismo , Elasticidad , Hemodinámica/fisiología , Humanos , Conceptos Matemáticos , Placa Aterosclerótica/etiología , Placa Aterosclerótica/patología , Placa Aterosclerótica/fisiopatología , Túnica Íntima/patología , Túnica Íntima/fisiopatología , Túnica Media/patología , Túnica Media/fisiopatología
15.
PLoS One ; 15(7): e0235553, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32614927

RESUMEN

Aortic aneurysm refers to dilatation of the aorta due to loss of elasticity and degenerative weakening of its wall. A preventive role for osteoprotegerin (Opg) in the development of abdominal aortic aneurysm has been reported in the CaCl2-induced aneurysm model, whereas Opg was found to promote suprarenal aortic aneurysm in the AngII-induced ApoE knockout mouse aneurysm model. To determine whether there is a common underlying mechanism to explain the impact of Opg deficiency on the vascular structure of the two aneurysm models, we analyzed suprarenal aortic tissue of 6-month-old ApoE-/-Opg-/- mice after AngII infusion for 28 days. Less aortic dissection and aortic lumen dilatation, more adventitial thickening, and higher expression of collagen I and Trail were observed in ApoE-/-Opg-/- mice relative to ApoE-/-Opg+/+ mice. An accumulation of α-smooth muscle actin and vimentin double-positive myofibroblasts was noted in the thickened adventitia of ApoE-/-Opg-/- mice. Our results suggest that fibrotic remodeling of the aorta induced by myofibroblast accumulation might be an important pathological event which tends to limit AngII-induced aortic dilatation in ApoE -/-Opg-/- mice.


Asunto(s)
Adventicia/patología , Aneurisma de la Aorta Abdominal/patología , Osteoprotegerina/genética , Adventicia/fisiología , Angiotensina II/farmacología , Animales , Aorta Abdominal/patología , Aorta Abdominal/fisiología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Colesterol/sangre , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/citología , Miofibroblastos/metabolismo , Osteoprotegerina/deficiencia , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Biomech Model Mechanobiol ; 18(5): 1507-1528, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31065952

RESUMEN

Abdominal aortic aneurysm is a prevalent cardiovascular disease with high mortality rates. The mechanical response of the arterial wall relies on the organizational and structural behavior of its microstructural components, and thus, a detailed understanding of the microscopic mechanical response of the arterial wall layers at loads ranging up to rupture is necessary to improve diagnostic techniques and possibly treatments. Following the common notion that adventitia is the ultimate barrier at loads close to rupture, in the present study, a finite element model of adventitial collagen network was developed to study the mechanical state at the fiber level under uniaxial loading. Image stacks of the rabbit carotid adventitial tissue at rest and under uniaxial tension obtained using multi-photon microscopy were used in this study, as well as the force-displacement curves obtained from previously published experiments. Morphological parameters like fiber orientation distribution, waviness, and volume fraction were extracted for one sample from the confocal image stacks. An inverse random sampling approach combined with a random walk algorithm was employed to reconstruct the collagen network for numerical simulation. The model was then verified using experimental stress-stretch curves. The model shows the remarkable capacity of collagen fibers to uncrimp and reorient in the loading direction. These results further show that at high stretches, collagen network behaves in a highly non-affine manner, which was quantified for each sample. A comprehensive parameter study to understand the relationship between structural parameters and their influence on mechanical behavior is presented. Through this study, the model was used to conclude important structure-function relationships that control the mechanical response. Our results also show that at loads close to rupture, the probability of failure occurring at the fiber level is up to 2%. Uncertainties in usually employed rupture risk indicators and the stochastic nature of the event of rupture combined with limited knowledge on the microscopic determinants motivate the development of such an analysis. Moreover, this study will advance the study of coupling microscopic mechanisms to rupture of the artery as a whole.


Asunto(s)
Adventicia/fisiología , Colágenos Fibrilares/química , Modelos Cardiovasculares , Algoritmos , Animales , Fenómenos Biomecánicos , Simulación por Computador , Análisis de Elementos Finitos , Masculino , Dinámicas no Lineales , Porosidad , Probabilidad , Conejos , Reproducibilidad de los Resultados , Estrés Mecánico , Resistencia a la Tracción
17.
J Mech Behav Biomed Mater ; 99: 27-46, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31330442

RESUMEN

A layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas was experimentally performed. Healthy aortas from twelve beating heart donors with an average age of 49.4 years, were received from Transplant Québec. Axial and circumferential strips were prepared from the specimens. They were dissected into intima, media and adventitia layers. Measurements of the opening angles were used to identify the circumferential residual stresses. Uniaxial tensile tests on axial and circumferential strips, together with the Gasser-Ogden-Holzapfel material model, were used to characterize the hyperelastic behaviour of the three aortic layers for each donor. Uniaxial harmonic excitations at different frequency, superimposed to initial stretch values, were used to characterize the viscoelastic behaviour. The storage modulus and the loss tangent were obtained for each layer in both directions; comparison to intact aortic wall was also performed. The generalized Maxwell model, within the framework of nonlinear viscoelasticity with internal variables, was used to obtain the constitutive material parameters. Results showed a positive correlation (p < 0.05 for circumferential media and adventitia) between stiffness and donor age for the three layers of the aorta in both axial and circumferential directions. A significant increase (around 50%) of the storage modulus (i.e. dynamic stiffness) was observed between the quasi-static value and loading at 1 Hz frequency, while further increase in frequency marginally affected its value. The loss tangent was only slightly influenced by the stretch value, which justified the use of the viscoelastic model adopted. Finally, similar loss tangent values were found for the three aortic layers.


Asunto(s)
Aorta Torácica/fisiología , Elasticidad , Viscosidad , Adulto , Adventicia/fisiología , Anciano , Fenómenos Biomecánicos , Femenino , Corazón/fisiología , Humanos , Masculino , Ensayo de Materiales , Persona de Mediana Edad , Presión , Estrés Mecánico , Resistencia a la Tracción
18.
J Biomech ; 96: 109335, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31540821

RESUMEN

Information on the layer-specific residual deformations of aortic tissue and how these vary throughout the vessel is important for understanding the regionally-varying aortic functions and pathophysiology, but not so much can be found in the literature. Toward this end, porcine aortas were sectioned into eighteen rings, with one ring from each anatomical position radially cut to obtain the zero-stress state for the intact wall and the other ring dissected into intimal-medial and adventitial layers; these rings were then radially cut to reach the zero-stress state for the intima-media and adventitia. Peripheral variations in internal/external circumferences, thickness, and opening angle of the intact wall and its layers were measured through image analysis at the no-load and zero-stress states. Intact wall and layer circumferences at both states significantly declined along the aorta, as did intact wall and intimal-medial but not adventitial thickness. Adventitia exhibited the greatest opening angles, approaching 180 deg all over the aorta. The opening angles of the intima-media and intact wall were quite similar, with the highest values in the ascending aorta, the lowest at the diaphragm, and increasing subsequently. Bending-related residual stretches were released by radial cutting that were compressive internally and tensile externally, displaying distinct axial variation for the intima-media and intact wall, and non-significant variation for the adventitia. Evidence is provided for the release upon layer separation of compressive stretches in the intima-media and of tensile stretches in the adventitia, whose values were smallest in the descending thoracic aorta and highest near the iliac artery bifurcation.


Asunto(s)
Aorta/anatomía & histología , Fenómenos Mecánicos , Adventicia/anatomía & histología , Adventicia/fisiología , Animales , Aorta/fisiología , Fenómenos Biomecánicos , Estrés Mecánico , Porcinos , Túnica Íntima/anatomía & histología , Túnica Íntima/fisiología , Túnica Media/fisiopatología
19.
J Biomech ; 88: 113-121, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31010593

RESUMEN

The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.


Asunto(s)
Envejecimiento/fisiología , Arterias/anatomía & histología , Arterias/fisiología , Adventicia/anatomía & histología , Adventicia/fisiología , Animales , Bovinos , Colágeno/metabolismo , Elasticidad , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Presión , Túnica Íntima/fisiología
20.
Stem Cell Res Ther ; 10(1): 294, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547879

RESUMEN

INTRODUCTION: Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown. METHODS AND RESULTS: The neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells' differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA. CONCLUSIONS: S100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB.


Asunto(s)
Ataxina-1/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Mioblastos/metabolismo , Miocitos del Músculo Liso/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Adventicia/citología , Adventicia/fisiología , Animales , Ataxina-1/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Humanos , Músculo Liso Vascular/citología , Mioblastos/citología , Miocitos del Músculo Liso/citología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Regeneración , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Túnica Íntima/citología , Túnica Íntima/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA