Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Antimicrob Agents Chemother ; 60(10): 6067-75, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480861

RESUMEN

Tachyplesin I is a 17-amino-acid cationic antimicrobial peptide (AMP) with a typical cyclic antiparallel ß-sheet structure that is a promising therapeutic for infections, tumors, and viruses. To date, no bacterial resistance to tachyplesin I has been reported. To explore the safety of tachyplesin I as an antibacterial drug for wide clinical application, we experimentally induced bacterial resistance to tachyplesin I by using two selection procedures and studied the preliminary resistance mechanisms. Aeromonas hydrophila XS91-4-1, Pseudomonas aeruginosa CGMCC1.2620, and Escherichia coli ATCC 25922 and F41 showed resistance to tachyplesin I under long-term selection pressure with continuously increasing concentrations of tachyplesin I. In addition, P. aeruginosa and E. coli exhibited resistance to tachyplesin I under UV mutagenesis selection conditions. Cell growth and colony morphology were slightly different between control strains and strains with induced resistance. Cross-resistance to tachyplesin I and antimicrobial agents (cefoperazone and amikacin) or other AMPs (pexiganan, tachyplesin III, and polyphemusin I) was observed in some resistant mutants. Previous studies showed that extracellular protease-mediated degradation of AMPs induced bacterial resistance to AMPs. Our results indicated that the resistance mechanism of P. aeruginosa was not entirely dependent on extracellular proteolytic degradation of tachyplesin I; however, tachyplesin I could induce increased proteolytic activity in P. aeruginosa Most importantly, our findings raise serious concerns about the long-term risks associated with the development and clinical use of tachyplesin I.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Unión al ADN/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Péptidos Cíclicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Aeromonas hydrophila/genética , Aeromonas hydrophila/efectos de la radiación , Aeromonas hydrophila/ultraestructura , Amicacina/farmacología , Cefoperazona/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de la radiación , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Escherichia coli/ultraestructura , Pruebas de Sensibilidad Microbiana , Mutación , Proteolisis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de la radiación , Pseudomonas aeruginosa/ultraestructura , Selección Genética , Rayos Ultravioleta
2.
Int J Mol Sci ; 16(12): 28255-69, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26633358

RESUMEN

Polar and but not lateral flagellin proteins from Aeromonas hydrophila strain AH-1 (serotype O11) were found to be glycosylated. Top-down mass spectrometry studies of purified polar flagellins suggested the presence of a 403 Da glycan of mass. Bottom-up mass spectrometry studies showed the polar flagellin peptides to be modified with 403 Da glycans in O-linkage. The MS fragmentation pattern of this putative glycan was similar to that of pseudaminic acid derivative. Mutants lacking the biosynthesis of pseudaminic acid (pseB and pseI homologues) were unable to produce polar flagella but no changes were observed in lateral flagella by post-transcriptional regulation of the flagellin. Complementation was achieved by reintroduction of the wild-type pseB and pseI. We compared two pathogenic features (adhesion to eukaryotic cells and biofilm production) between the wild-type strain and two kinds of mutants: mutants lacking polar flagella glycosylation and lacking the O11-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. Results suggest that polar flagella glycosylation is extremely important for A. hydrophila AH-1 adhesion to Hep-2 cells and biofilm formation. In addition, we show the importance of the polar flagella glycosylation for immune stimulation of IL-8 production via toll-"like" receptor 5 (TLR5).


Asunto(s)
Aeromonas hydrophila/metabolismo , Flagelos/metabolismo , Aeromonas hydrophila/clasificación , Aeromonas hydrophila/ultraestructura , Secuencia de Aminoácidos , Adhesión Bacteriana , Biopelículas , Línea Celular , Flagelina/química , Flagelina/metabolismo , Glicosilación , Humanos , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Proteolisis , Serogrupo
3.
Int J Mol Sci ; 15(12): 21935-46, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25464381

RESUMEN

Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).


Asunto(s)
Aeromonas hydrophila/citología , Aeromonas hydrophila/fisiología , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Flagelos/metabolismo , Inmunidad , Aeromonas hydrophila/ultraestructura , Línea Celular , Flagelos/ultraestructura , Flagelina , Glicosilación , Humanos , Interleucina-8/metabolismo
4.
Environ Sci Technol ; 47(21): 12486-95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24083465

RESUMEN

Nanostructured titania (nano-TiO2) is produced in diverse shapes, but it remains largely unknown how tuning the morphology of nano-TiO2 may alter its toxicity. Herein, we show that material morphology plays a critical role in regulating the phototoxicity of nano-TiO2 to bacteria. Low-dimensional nano-TiO2, including nanotubes, nanorods, and nanosheets, were synthesized hydrothermally, and their effects on the bacterial viability of Escherichia coli and Aeromonas hydrophila were compared to spherical nanostructures (anatase nanospheres and P25). Results reveal that TiO2 nanotubes and nanosheets are less phototoxic than their rod- and sphere-shape counterparts under simulated solar irradiation. None of the tested nano-TiO2 shows toxicity in the dark. In contrast to their diminished phototoxicity, however, TiO2 nanotubes and nanosheets exhibit comparable or even higher photoactivity than other nanostructures. Observations by scanning transmission electron microscopy suggest that material morphology influences nano-TiO2 phototoxicity by governing how nano-TiO2 particles align at the bacterial cell surface. Overall, when comparing materials with different morphologies and dimensionality, nano-TiO2 phototoxicity is not a simple function of photocatalytic reactivity or ROS production. Instead, we propose that the evaluation of nano-TiO2 phototoxicity encompasses a three-pronged approach, involving the intrinsic photoactivity, aggregation of nano-TiO2, and the nano-TiO2/bacteria surface interactions.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/efectos de la radiación , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Luz , Nanoestructuras/toxicidad , Titanio/toxicidad , Aeromonas hydrophila/ultraestructura , Catálisis/efectos de los fármacos , Catálisis/efectos de la radiación , Escherichia coli/ultraestructura , Cinética , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Nanoestructuras/ultraestructura , Espectrometría por Rayos X
5.
Foodborne Pathog Dis ; 9(4): 298-304, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22300224

RESUMEN

This study aimed to evaluate the antibacterial activities of the essential oils from Origanum vulgare L. (OV) and Rosmarinus officinalis L. (RO), both singly and in combination at sub-inhibitory concentrations (» MIC + » MIC), against Aeromonas hydrophila and to investigate the possible mechanisms underlying these activities. Used singly (OV: 2.5 µL/mL; RO: 20 µL/mL) or in a mixture (OV: 0.625 µL/mL + RO: 5 µL/L), these essential oils led to a significant decrease (p<0.01) in bacterial viability after 24 h of exposure. A decrease in glucose consumption by A. hydrophila and release of cellular material were observed immediately after the addition of the essential oils, both singly and as a mixture, and continued for up to 6 h. Electron microscopy of cells exposed to the essential oils revealed severe changes in the plasma membrane, cytoplasmic appearance, and cell shape during the 6-h exposure period. OV and RO essential oils combined at sub-inhibitory concentrations could be rationally applied to inhibit the growth of A. hydrophila in food products, particularly minimally processed vegetables.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Origanum/química , Aceites de Plantas/farmacología , Rosmarinus/química , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/ultraestructura , Antibacterianos/aislamiento & purificación , Membrana Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Sinergismo Farmacológico , Microbiología de Alimentos , Glucosa/metabolismo , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Factores de Tiempo
6.
J Bacteriol ; 193(19): 5179-90, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784933

RESUMEN

Aeromonas hydrophila polar-flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that the A. hydrophila polar flagellum is constitutively expressed. In contrast to other bacteria with dual flagellar systems such as Vibrio parahaemolyticus, the A. hydrophila LafK protein does not compensate for the lack of the polar-flagellum regulator FlrA (V. parahaemolyticus FlaK homologue). This is consistent with the fact that the A. hydrophila FlrA mutation abolishes polar-flagellum formation in liquid and on solid surfaces but does not affect inducible lateral-flagellum formation. The results highlight that the polar- and lateral-flagellum interconnections and control networks are specific and that there are differences between the dual flagellar systems in A. hydrophila and V. parahaemolyticus. Furthermore, our results indicate that the A. hydrophila polar-flagellum transcriptional hierarchy (also in class II, III, and IV genes) shares some similarities with but has many important differences from the transcriptional hierarchies of Vibrio cholerae and Pseudomonas aeruginosa. The A. hydrophila flhF and flhG genes are essential for the assembly of a functional polar flagellum because in-frame mutants fail to swim in liquid medium and lack the polar flagellum. In Vibrio and Pseudomonas flhG disruption increases the number of polar flagella per cell, and Pseudomonas flhF disruption gives an aberrant placement of flagellum. Here, we propose the gene transcriptional hierarchy for the A. hydrophila polar flagellum.


Asunto(s)
Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Aeromonas hydrophila/genética , Aeromonas hydrophila/ultraestructura , Flagelos/genética , Flagelos/ultraestructura , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Microscopía Electrónica de Transmisión , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Microb Pathog ; 50(2): 63-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21074603

RESUMEN

Aeromonas hydrophila being a ubiquitous bacterium is prone to arsenic exposure. The present study was designed to determine the role of arsenic on growth and virulence of A. hydrophila. Exposure to arsenic (1 mg L(-1) and 2 mg L(-1)) had no effect on growth but significantly inhibited the hemolytic and cytotoxic potential of exposed bacteria. Transmission electron microscopy revealed loss of membrane integrity and presence of condensed cytoplasm suggestive of acute stress in bacteria exposed to arsenic. Arsenic-adapted bacteria were developed by repeated sub-culturing in presence of arsenic. Arsenic-adaptation led to significant recovery in hemolytic and cytotoxic potential. The arsenic-adapted bacteria exhibited normal membrane integrity, decreased cytoplasmic condensation and possessed scattered polysome like structures in the cytoplasm. A positive correlation was observed between arsenic tolerance and resistance to several antimicrobials. Arsenic-adaptation failed to confer cross-protection to mercury and cadmium stress. SDS-PAGE analysis revealed the expression of two new proteins of approximately 85 kDa and 79 kDa respectively in arsenic-adapted A. hydrophila. Plasmid-curing and transformation studies clearly indicate plasmid has no role on arsenic resistance trait of the bacteria. Our study, for the first time, reports a structure and function relationship of xenobiotics on bacteria.


Asunto(s)
Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/patogenicidad , Arsénico/toxicidad , Bagres/microbiología , Enfermedades de los Peces/microbiología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/ultraestructura , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/efectos de los fármacos
8.
Artículo en Ruso | MEDLINE | ID: mdl-22308735

RESUMEN

AIM: Study of extracellular membrane nanovesicles production by Aeromonas hydrophila and Aeromonas salmonicida bacteria on a subcellular level. MATERIALS AND METHODS: 4 strains of A. hydrophila: 342-1, E 8-8, H 336 and H 1-6-05 and 1 strain of A. salmonicida A-450 as well as intact Wistar line rats were used. Methods of transmission electron microscopy: ultrathin sectioning and negative contrasting were used. RESULTS. A. hydrophila and A. salmonicida bacteria produced in pure cultures excrete into the environment extracellular membrane nanovesicles. The size of these vesicles varies from 20 to 200 nm in diameter. The process of gemmation from bacterial cell and possibility of obtaining isolated membrane nanovesicles preparations is shown. These vesicles are detected in ultrathin sections of apical surface of intact rat intestine among accumulations ofparietal microorganisms that colonize mucous membrane. Extracellular membrane nanovesicles excreted by aeromonas are analogous by size and ultrastructure to vesicles of other species of gram-negative bacteria described in the literature. CONCLUSION: During production of A. hydrophila and A. salmonicida bacteria in vitro nanovesicles are formed from the outer membranes of the cells and excreted into the environment, the nanovesicles are similar to those detected in ultrathin sections of the surface of intestine of rats among accumulations of parietal microorganisms and in glycocalix between epitheliocyte microvilli.


Asunto(s)
Aeromonas hydrophila/fisiología , Aeromonas salmonicida/fisiología , Membrana Celular/ultraestructura , Mucosa Intestinal/microbiología , Orgánulos/ultraestructura , Aeromonas hydrophila/ultraestructura , Aeromonas salmonicida/ultraestructura , Animales , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Microscopía Electrónica , Microtomía , Microvellosidades/microbiología , Tamaño de los Orgánulos , Orgánulos/metabolismo , Percepción de Quorum/fisiología , Ratas , Ratas Wistar , Coloración y Etiquetado
9.
Biofouling ; 26(6): 667-72, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20661790

RESUMEN

Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Benzaldehídos/farmacología , Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/ultraestructura , Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Medios de Cultivo , Microscopía Confocal , Ósmosis/fisiología , Percepción de Quorum/efectos de los fármacos , Purificación del Agua/instrumentación , Purificación del Agua/métodos
10.
Sci Rep ; 10(1): 15479, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968153

RESUMEN

The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.


Asunto(s)
Aeromonas hydrophila/genética , Genoma Bacteriano/genética , Aeromonas hydrophila/patogenicidad , Aeromonas hydrophila/ultraestructura , Animales , Cromosomas Bacterianos/genética , Clonación Molecular , Enfermedades de los Peces/microbiología , Genes Bacterianos/genética , Genómica , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Filogenia , Percepción de Quorum/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma/métodos
11.
J Mol Biol ; 228(2): 652-61, 1992 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-1333533

RESUMEN

The tetragonally arranged S-layer of Aeromonas hydrophila contains two morphological domains. The mature S-layer protein of A. hydrophila has a subunit molecular weight of 52,000, and has been reported to contain two structural domains. Here a mutant has been isolated which produces an S-layer of subunit molecular weight 38,650 as determined by sedimentation analysis. This truncated S-protein was exported via the periplasm to the cell surface, but could not self-assemble into a tetragonal array or be anchored to the cell surface. Instead the truncated protein formed cup-like structures which were purified and characterized biochemically. Automated Edman degradation showed that the truncated protein comprised the amino-terminal structural domain of the S-protein. This domain had an increased hydrophobic amino acid content relative to the wild-type protein, and contained approximately 42% beta-sheet, 10% alpha-helix, and 19% beta-turn. Differences in alpha-helix and beta-turn contents between the wild-type and truncated proteins were observed when the effects of pH and SDS were examined, indicating that the carboxy terminus influences the effects of environmental change on the conformation of the S-protein. This lesser carboxy-terminal array also appears to be required for both correct array morphology, and array anchoring, while the greater amino-terminal domain appears to comprise the major morphological core of the surface array.


Asunto(s)
Aeromonas hydrophila/química , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/química , Glicoproteínas de Membrana/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/ultraestructura , Aminoácidos/análisis , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Fraccionamiento Celular , Dicroismo Circular , Elementos Transponibles de ADN , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Microscopía Electrónica , Peso Molecular , Mutación , Estructura Secundaria de Proteína
12.
FEMS Microbiol Lett ; 244(1): 19-25, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15727816

RESUMEN

The gene phaPAh, encoding the protein phasin that is associated with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) granule of Aeromonas hydrophila 4AK4, was cloned and characterized. Recombinant strains harboring additional copies of the phasin gene (phaPAh) and the polyhydroxyalkanoate (PHA) synthase gene (phaCAh) accumulated PHBHHx copolyesters consisting of 21 mol% 3-hydroxyhexanoate (3HHx) as compared to 14 mol% 3HHx produced by wild type strain. The molecular weight of PHBHHx produced by the above recombinants was lower than that obtained from the wild type strain grown under similar conditions. Over-expression of phaPAh led to the production of more PHA granules but with reduced sizes. SDS-PAGE showed that PhaPAh was the predominant protein present in the PHBHHx granules. The RT-PCR results suggested that phasin PhaPAh, regulated phaCAh gene at the transcription level. Gene PhaPWe from Wautersia eutropha (formerly Ralstonia eutropha; encoding a 20 kDa protein with low amino acid homology to the A. hydrophila 13 kDa protein) cloned into A. hydrophila 4AK4 exhibited similar effects on PHBHHx production and PHBHHx composition. These data suggest that the phasins could represent a protein family possessing similar functions but different structures.


Asunto(s)
Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Bacterianos , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/ultraestructura , Secuencia de Bases , Caproatos/metabolismo , Clonación Molecular , ADN Bacteriano/genética , Expresión Génica , Microscopía Electrónica , Reacción en Cadena de la Polimerasa
13.
FEMS Microbiol Lett ; 362(13): fnv089, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26040590

RESUMEN

This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.


Asunto(s)
Aeromonas hydrophila/genética , Aeromonas hydrophila/fisiología , Alanina Racemasa/genética , Alanina Racemasa/metabolismo , Permeabilidad de la Membrana Celular , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/ultraestructura , Alanina/metabolismo , Permeabilidad de la Membrana Celular/genética , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Técnicas de Inactivación de Genes , Viabilidad Microbiana/genética , Mutación
14.
J Food Prot ; 78(2): 424-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25710162

RESUMEN

This study investigated the effects of carvacrol (CAR) and 1,8-cineole (CIN) alone (at the MIC) or in combination at subinhibitory amounts (both at 1/8 MIC) on the cell viability, membrane permeability, and morphology of Aeromonas hydrophila INCQS 7966 (A. hydrophila) cultivated in a vegetable-based broth. CAR and CIN alone or in combination severely affected the viability of the bacteria and caused dramatic changes in the cell membrane permeability, leading to cell death, as observed by confocal laser microscopy. Scanning and transmission electron microscopy images of bacterial cells exposed to CAR or CIN or the mixture of both compounds revealed severe changes in cell wall structure, rupture of the plasma membrane, shrinking of cells, condensation of cytoplasmic content, leakage of intracellular material, and cell collapse. These findings suggest that CAR and CIN alone or in combination at subinhibitory amounts could be applied to inhibit the growth of A. hydrophila in foods, particularly as sanitizing agents in vegetables.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Ciclohexanoles/farmacología , Monoterpenos/farmacología , Verduras/microbiología , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/ultraestructura , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Cimenos , Eucaliptol , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión
15.
FEMS Microbiol Lett ; 223(1): 129-34, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12799011

RESUMEN

A facultative anaerobic bacterium was isolated from a mediator-less microbial fuel cell fed with artificial wastewater containing acetate and designated as PA3. The isolate was identified as a strain of Aeromonas hydrophila based on its biochemical, physiological and morphological characteristics as well as 16S rDNA sequence analysis and DNA-DNA hybridization. PA3 used glucose, glycerol, pyruvate and hydrogen to reduce Fe(III), nitrate and sulfate. Cyclic voltammetry showed that PA3 was electrochemically active and was the culture collection strain A. hydrophila KCTC 2358. Electricity was generated from a fuel cell-type reactor, the anode compartment of which was inoculated with cell suspensions of the isolate or A. hydrophila KCTC 2358. The electrochemical activities are novel characteristics of A. hydrophila.


Asunto(s)
Aeromonas hydrophila/clasificación , Aeromonas hydrophila/metabolismo , Electroquímica/métodos , Compuestos Férricos/metabolismo , Aeromonas hydrophila/ultraestructura , Electrodos/microbiología , Electrones , Microscopía Electrónica de Rastreo , Nitratos/metabolismo , Filogenia , Sulfatos/metabolismo
16.
Ann Clin Lab Sci ; 27(4): 254-9, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9210970

RESUMEN

Aeromonas hydrophila has emerged as a potential pathogen in the immunocompromised host. Various aeromonal infections, including septicemia, have also been reported in apparently healthy individuals. For years, researchers have disagreed over the epidemiologic roles of aeromonads in gastroenteritis. Isolation rates of aeromonads by stool culture among patients with gastroenteritis are not consistently high. Carriers of this bacterium also exist. The septicemic course is, however, often fulminant and fatal, and may lack an obvious focus. Pathogenic mechanisms are complex and largely unresolved. The objective of this study is to report the necropsy findings from a uremic patient who presented with typical aeromonal septicemia of obscure origin asking if such investigation could give insight into some of the questions mentioned previously. Western blot immunostaining for aerolysin (beta-hemolysin of aeromonads) was used to evaluate whether or not such a virulence factor is involved in the process of septic dissemination. The autopsy showed that the skin and liver contained microabscesses. The upper gastrointestinal mucosae and spleen contain patchy putrefactive lesions with adjacent focal hemorrhage. Perimortem blood cultures grew Aeromonas hydrophila. A conventional Western blot analysis of the culture supernatant failed to show aerolysin. A control Aeromonas sobia American Type Culture Collection (ATCC) strain produces readily detectable aerolysin. It is concluded that this isolate may be aerolysin-deficient or one secreting low levels of aerolysin; these would require more sensitive methods of detection. The primary focus of infection might be the upper gastrointestinal tract. Other virulence factors including the bacterial proteases and/or phospholipases might be responsible for the pathogenesis of septic dissemination.


Asunto(s)
Aeromonas hydrophila/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/etiología , Sepsis/microbiología , Sepsis/patología , Aeromonas hydrophila/ultraestructura , Anciano , Toxinas Bacterianas/análisis , Toxinas Bacterianas/metabolismo , Gastroenteritis/patología , Infecciones por Bacterias Gramnegativas/patología , Proteínas Hemolisinas/análisis , Proteínas Hemolisinas/metabolismo , Humanos , Hígado/microbiología , Hígado/ultraestructura , Masculino , Microscopía , Proteínas Citotóxicas Formadoras de Poros , Bazo/microbiología , Bazo/ultraestructura , Factores de Tiempo
17.
J Food Prot ; 61(10): 1321-9, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9798149

RESUMEN

Scanning electron microscopy observation was used to investigate the ability of Aeromonas hydrophila to attach to various water distribution pipe surfaces, such as stainless steel, copper, and polybutylene, after different contact times at ambient and storage temperatures. Surface energy value of each surface was estimated by contact angle measurements using water, alpha-bromonaphthalene, and dimethyl sulfoxide. Our results indicated that Aeromonas cells could easily attach to all surface types after exposures as short as 1 or 4 h at both temperatures (4 and 20 degrees C). Polybutylene, a low-energy surface (41.2 mJ.m-2), followed by stainless steel (65.7 mJ.m-2), was most colonized by Aeromonas cells, whereas few cells were observed on copper, which has a surface energy of 45.8 mJ.m-2. Extracellular materials could also be observed on polybutylene surfaces, especially after 1 and 4 h of exposure at the refrigeration temperature.


Asunto(s)
Aeromonas hydrophila/fisiología , Adhesión Bacteriana , Abastecimiento de Agua , Aeromonas hydrophila/ultraestructura , Cobre , Microscopía Electrónica de Rastreo , Polienos , Acero Inoxidable , Propiedades de Superficie , Temperatura , Factores de Tiempo , Microbiología del Agua
18.
Wei Sheng Wu Xue Bao ; 36(2): 144-50, 1996 Apr.
Artículo en Zh | MEDLINE | ID: mdl-9206273

RESUMEN

The regular surface protein array (S-layer) present on Aeromonas hydrophila J-1 was composed of a single species of protein of apparent molecular weight 51500. This protein was extracted from whole cells by treatment with 0.2 mol/L glycine hydrocholoide (pH4.0). The protein was purified by Sephadex G-200 gel filtration chromatography and an ion exchange chromatography on DEAE-cellulose. Amino acid composition analysis showed that the protein contained 36.8% hydrophobic amino acids. But the protein did not confer hydrophobicity to the cell surface when present as an intact S-layer by salt aggregation test. ELISA and immunoblotting with two different polyclonal antisera against surface exposed-(PM) and non-surface-exposed epitopes (PR) of the protein revealed that the sensitivity of PM was higher than that of PR. Antigenic diversity of the S-layer proteins from 20 bacterial samples was analysed by ELISA with PM and PF1 (polyclonal antiserum against Aeromonas hydrophila TF7 S-layer protein). The S-layer proteins were distinguishable from the extracellular toxin of the homogeneous strains in antigenic and biochemical characterization and the S-layer proteins were one of the main protective antigens.


Asunto(s)
Aeromonas hydrophila/química , Proteínas Bacterianas/aislamiento & purificación , Glicoproteínas de Membrana , Aeromonas hydrophila/ultraestructura , Aminoácidos/análisis , Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología
19.
Wei Sheng Wu Xue Bao ; 43(4): 498-502, 2003 Aug.
Artículo en Zh | MEDLINE | ID: mdl-16276926

RESUMEN

Aeromonas hydrophila (Ah) biofilm (BF) model in vitro was established and antibiotic effects of 11 antimicrobials on BF and free-cell(FC) bacteria were tested. After the Ah J-1 on the surfaces of the silicon pieces was incubated for 7 days in TSB, the intact BF was formed by detection of AgNO3 solution staining. The FC bacteria were resistant to Penicillin but susceptible to Enrofloxacin and Fulgram. Their minimum bactericidal concentrations (MBCs) were 256 microg/mL, 0.03 microg/mL and 0.25 microg/mL respectively. Florfenicol had a strong antibacterial effect on BF bacteria and the ratio of MBC between BF and FC bacteria was 2 to 1, but more than 32 to 1 occurred for Kanamycin, Penicillin and Neomycin. Morphology and structure of BFs with/without the treatment of Enrofloxacin were observed under scanning electron microscope, while the bactericidal curve was detected. Enrofloxacin could eradicate the FC bacteria completely but not the BF bacteria at a concentration of 4 fold MBC. The 32 fold MBC Enrofloxacin could entirely kill the FC bacteria in 4h, but in 24h for BF bacteria. The result suggested that BF enabled Ah to have strong resistance to antimicrobials and the potential influence of BF should be highly considered.


Asunto(s)
Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/fisiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Aeromonas hydrophila/ultraestructura , Pruebas de Sensibilidad Microbiana
20.
Int J Food Microbiol ; 188: 1-10, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25064811

RESUMEN

In the present study we investigated the behavior of an Aeromonas hydrophila strain in prolonged nutrient deprivation condition analyzing the possible link among survival, cell morphology and adhesive characteristics and correlating them with the expression of the 43kDa outer membrane protein (OMP). The strain was inoculated in mineral and drinking chlorinated water, and in Nutrient Broth as a control with incubation at 4 and 24°C for 176days. Specimens were analyzed at different times during starvation stress. Viability was assessed by flow cytometry and growth by plate count technique; morphology and adhesivity were detected by optical and electron microscopy. The 43kDa OMP expression at different times was determined after immunoblotting assay using a polyclonal antibody produced in rabbit. The results showed a long-term viability as evidenced by cytofluorimetric analysis; however, the prolonged starvation led to the shift from the normal rod shaped cells to spherical forms in the last phases of incubation especially at 24°C. Concomitantly with the appearance of spherical cells we noted a reduction of the 43kDa OMP content and adhesive ability. Therefore, our results suggest a role of the 43kDa OMP as adhesin in A. hydrophila. In conclusion, we demonstrated that the bacterium can long survive under stress conditions, however adopting strategies which can lead to a loss of some cell surface components involved in the interactions with eukaryotic cells, therefore modifying its virulence properties.


Asunto(s)
Aeromonas hydrophila/fisiología , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/metabolismo , Aeromonas hydrophila/ultraestructura , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Citometría de Flujo , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA