Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 232, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963459

RESUMEN

BACKGROUND: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. RESULTS: A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. CONCLUSIONS: The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


Asunto(s)
Carbohidratos/química , Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Alcohol Deshidrogenasa/biosíntesis , Alcohol Deshidrogenasa/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Proteína Morfogenética Ósea 7/biosíntesis , Proteína Morfogenética Ósea 7/aislamiento & purificación , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/aislamiento & purificación , Clonación Molecular , Factor de Crecimiento Epidérmico/biosíntesis , Factor de Crecimiento Epidérmico/aislamiento & purificación , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Humanos , Hidrolasas/biosíntesis , Hidrolasas/aislamiento & purificación , Cuerpos de Inclusión/metabolismo , Lipasa/biosíntesis , Lipasa/aislamiento & purificación , Proteínas de Unión a Maltosa , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/aislamiento & purificación
2.
Chembiochem ; 20(13): 1653-1658, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30811825

RESUMEN

With the aim of applying redox-neutral cascade reactions in organic media, fusions of a type II flavin-containing monooxygenase (FMO-E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bifunctional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell-free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and butane-1,4-diol in different microaqueous media with only 5 % (v/v) aqueous buffer without any addition of external cofactor. Methyl tert-butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of γ-butyrolactone, resulting in about 27 % analytical yield.


Asunto(s)
Alcohol Deshidrogenasa/química , Oxigenasas de Función Mixta/química , Enzimas Multifuncionales/química , Proteínas Recombinantes de Fusión/química , 4-Butirolactona/síntesis química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Animales , Escherichia coli/genética , Liofilización , Caballos , Cinética , Éteres Metílicos/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/aislamiento & purificación , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/aislamiento & purificación , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Rhodococcus/enzimología , Solventes/química
3.
J Biol Inorg Chem ; 22(4): 527-534, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28084552

RESUMEN

NAD(P)-dependent group III alcohol dehydrogenases (ADHs), well known as iron-activated enzymes, generally lose their activities under aerobic conditions due to their oxygen-sensitivities. In this paper, we expressed an extremely thermostable group III ADH from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (PhADH) heterologously in Escherichia coli. When purified from a culture medium containing nickel, the recombinant PhADH (Ni-PhADH) contained 0.85 ± 0.01 g-atoms of nickel per subunit. Ni-PhADH retained high activity under aerobic conditions (9.80 U mg-1), while the enzyme expressed without adding nickel contained 0.46 ± 0.01 g-atoms of iron per subunit and showed little activity (0.27 U mg-1). In the presence of oxygen, the activity of the Fe2+-reconstituted PhADH prepared from the Ni-PhADH was gradually decreased, whereas the Ni2+-reconstituted PhADH maintained enzymatic activity. These results indicated that PhADH with bound nickel ion was stable in oxygen. The activity of the Ni2+-reconstituted PhADH prepared from the expression without adding nickel was significantly lower than that from the Ni-PhADH, suggesting that binding a nickel ion to PhADH in this expression system contributed to protecting against inactivation during the expression and purification processes. Unlike other thermophilic group III ADHs, Ni-PhADH showed high affinity for NAD(H) rather than NADP(H). Furthermore, it showed an unusually high k cat value toward aldehyde reduction. The activity of Ni-PhADH for butanal reduction was increased to 60.7 U mg-1 with increasing the temperature to 95 °C. These findings provide a new strategy to obtain oxygen-sensitive group III ADHs.


Asunto(s)
Alcohol Deshidrogenasa/genética , Regulación Enzimológica de la Expresión Génica/genética , Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa , Pyrococcus horikoshii/enzimología , Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Concentración de Iones de Hidrógeno , Temperatura
4.
Microb Cell Fact ; 15(1): 175, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733155

RESUMEN

BACKGROUND: The non-conventional yeast Arxula adeninivorans uses 1-butanol as a carbon source and has recently attracted attention as a promising organism for 1-butanol production. Alcohol dehydrogenases (adhp) are important catalysts in 1-butanol metabolism, but only Aadh1p from Arxula has been characterized. This enzyme is involved in ethanol synthesis but has a low impact on 1-butanol degradation. RESULTS: In this study, we identified and characterized a second adhp from A. adeninivorans (Aadh2p). Compared to Saccharomyces cerevisiae ADHs' (ScAdh) protein sequences it originates from the same ancestral node as ScAdh6p, 7p and 4p. It is also localized in the cytoplasm and uses NAD(H) as cofactor. The enzyme has its highest activity with medium chain-length alcohols and maximum activity with 1-butanol with the catalytic efficiency of the purified enzyme being 42 and 43,000 times higher than with ethanol and acetaldehyde, respectively. Arxula adeninivorans strain G1212/YRC102-AADH2, which expresses the AADH2 gene under the control of the strong constitutive TEF1 promoter was constructed. It achieved an ADH activity of up to 8000 U/L and 500 U/g dry cell weight (dcw) which is in contrast to the control strain G1212/YRC102 which had an ADH activity of up to 1400 U/L and 200 U/g dcw. Gene expression analysis showed that AADH2 derepression or induction using non-fermentable carbon-sources such as ethanol, pyruvate, glycerol or 1-butanol did occur. Compared to G1212/YRC102 AADH2 knock-out strain had a slower growth rate and lower 1-butanol consumption if 1-butanol was used as sole carbon source and AADH2-transformants did not grow at all in the same conditions. However, addition of the branched-chain amino acids leucine, isoleucine and valine allowed the transformants to use 1-butanol as carbon source. The addition of these amino acids to the control strain and Δaadh2 mutant cultures had the effect of accelerating 1-butanol consumption. CONCLUSIONS: Our results confirm that Aadh2p plays a major role in A. adeninivorans 1-butanol metabolism. It is upregulated by up to 60-fold when the cells grow on 1-butanol, whereas only minor changes were found in the relative expression level for Aadh1p. Thus the constitutive overexpression of the AADH2 gene could be useful in the production of 1-butanol by A. adeninivorans, although it is likely that other ADHs will have to be knocked-out to prevent 1-butanol oxidation.


Asunto(s)
1-Butanol/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Redes y Vías Metabólicas/genética , Levaduras/enzimología , Alcohol Deshidrogenasa/aislamiento & purificación , Carbono/metabolismo , Etanol/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , NAD/metabolismo , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
5.
Int J Mol Sci ; 16(1): 1293-311, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25574602

RESUMEN

Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Etanol/metabolismo , Gluconacetobacter/enzimología , Acetatos/análisis , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/aislamiento & purificación , Aldehídos/análisis , Secuencia de Aminoácidos , Biocatálisis , Radioisótopos de Carbono/química , Cromatografía de Gases y Espectrometría de Masas , Marcaje Isotópico , Cinética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oxidación-Reducción , Desnaturalización Proteica , Temperatura
6.
Appl Environ Microbiol ; 80(8): 2468-77, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509930

RESUMEN

The noncanonical alcohol dehydrogenase AlkJ is encoded on the alkane-metabolizing alk operon of the mesophilic bacterium Pseudomonas putida GPo1. To gain insight into the enzymology of AlkJ, we have produced the recombinant protein in Escherichia coli and purified it to homogeneity using His6 tag affinity and size exclusion chromatography (SEC). Despite synthesis in the cytoplasm, AlkJ was associated with the bacterial cell membrane, and solubilization with n-dodecyl-ß-D-maltoside was necessary to liberate the enzyme. SEC and spectrophotometric analysis revealed a dimeric quaternary structure with stoichiometrically bound reduced flavin adenine dinucleotide (FADH2). The holoenzyme showed thermal denaturation at moderate temperatures around 35°C, according to both activity assay and temperature-dependent circular dichroism spectroscopy. The tightly bound coenzyme was released only upon denaturation with SDS or treatment with urea-KBr and, after air oxidation, exhibited the characteristic absorption spectrum of FAD. The enzymatic activity of purified AlkJ for 1-butanol, 1-hexanol, and 1-octanol as well as the n-alkanol derivative ω-hydroxy lauric acid methyl ester (HLAMe) was quantified in the presence of the artificial electron acceptors phenazine methosulfate (PMS) and 2,6-dichlorophenolindophenol (DCPIP), indicating broad substrate specificity with the lowest activity on the shortest alcohol, 1-butanol. Furthermore, AlkJ was able to accept as cosubstrates/oxidants the ubiquinone derivatives Q0 and Q1, also in conjunction with cytochrome c, which suggests coupling to the bacterial respiratory chain of this membrane-associated enzyme in its physiological environment. Using gas chromatographic analysis, we demonstrated specific biocatalytic conversion by AlkJ of the substrate HLAMe to the industrially relevant aldehyde, thus enabling the biotechnological production of 12-amino lauric acid methyl ester via subsequent enzymatic transamination.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Aldehídos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Pseudomonas putida/enzimología , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/aislamiento & purificación , Cromatografía de Afinidad , Coenzimas/metabolismo , Escherichia coli/genética , Desnaturalización Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
7.
Appl Microbiol Biotechnol ; 98(9): 4041-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24265029

RESUMEN

NAD(P)(+)-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (<20 to >90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co(2+). Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Iones/metabolismo , Metales/metabolismo , Pectobacterium/enzimología , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Sustitución de Aminoácidos , Dicroismo Circular , Clonación Molecular , Análisis Mutacional de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Pectobacterium/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Temperatura
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2104-15, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100328

RESUMEN

Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Šresolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.


Asunto(s)
Alcohol Deshidrogenasa/química , Biocombustibles/microbiología , Etanol , Geobacillus/enzimología , Modelos Moleculares , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Secuencia de Aminoácidos , Cristalografía por Rayos X , Fermentación , Geobacillus/genética , Geobacillus/crecimiento & desarrollo , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética
9.
Protein Expr Purif ; 90(2): 74-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23707506

RESUMEN

Alcohol dehydrogenases (ADH) catalyze the interconversion between alcohols and aldehydes with the reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH. In this study, for the first time we report an over-expression and purification strategy for the Arabidosis thaliana ADH (AtADH), and characterize its enzymatic properties. AtADH was expressed in an Escherichia coli system, the polyhistidine-tag was removed after the recombinant AtADH protein was purified by metal chelating affinity chromatography. Activity assays demonstrated that AtADH has distinct enzymatic properties when compared with many well-known ADHs. It held peak activity at pH 10.5 and showed broad substrate selectivity for primary and secondary alcohols. The kinetic Km parameters for both ethanol and coenzyme were in the order of mM. This relative low affinity may reflect the need of the plant to maintain a supply of NAD(+) in nature. Different from yeast ADH, AtADH showed almost the same activity for short straight chain alcohols and reduced activity for secondary alcohols. This broad spectrum in alcohol selection and the observed higher catalytic activity (high Vmax (EtOH)) may result from the requirement of the single enzyme to accommodate many substrates.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/enzimología , Alcohol Deshidrogenasa/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Catálisis , Cinética , NAD/metabolismo , Especificidad por Sustrato
10.
Appl Microbiol Biotechnol ; 97(20): 8963-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23385476

RESUMEN

Alcohol dehydrogenases are highly diverse enzymes catalysing the interconversion of alcohols and aldehydes or ketones. Due to their versatile specificities, these biocatalysts are of great interest for industrial applications. The adh3-gene encoding a group III alcohol dehydrogenase was isolated from the gram-positive bacterium Oenococcus oeni and was characterised after expression in the heterologous host Escherichia coli. Adh3 has been identified by genome BLASTP analyses using the amino acid sequence of 1,3-propanediol dehydrogenase DhaT from Klebsiella pneumoniae and group III alcohol dehydrogenases with known activity towards 1,3-propanediol as target sequences. The recombinant protein was purified in a two-step column chromatography approach. Crystal structure determination and biochemical characterisation confirmed that Adh3 forms a Ni(2+)-containing homodimer in its active form. Adh3 catalyses the interconversion of ethanol and its corresponding aldehyde acetaldyhyde and is also capable of using other alcoholic compounds as substrates, such as 1,3-propanediol, 1,2-propanediol and 1-propanol. In the presence of Ni(2+), activity increases towards 1,3-propanediol and 1,2-propanediol. Adh3 is strictly dependent on NAD(+)/NADH, whereas no activity has been observed with NADP(+)/NADPH as co-factor. The enzyme exhibits a specific activity of 1.1 U/mg using EtOH as substrate with an optimal pH value of 9.0 for ethanol oxidation and 8.0 for aldehyde reduction. Moreover, Adh3 exhibits tolerance to several metal ions and organic solvents, but is completely inhibited in the presence of Zn(2+). The present study demonstrates that O. oeni is a group III alcohol dehydrogenase with versatile substrate specificity, including Ni(2+)-dependent activity towards 1,3-propanediol.


Asunto(s)
Alcohol Deshidrogenasa/química , Proteínas Bacterianas/química , Oenococcus/enzimología , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Aldehídos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biotecnología , Dimerización , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , NAD/metabolismo , NADP/metabolismo , Níquel/metabolismo , Oenococcus/genética , Glicoles de Propileno/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
11.
Biotechnol Lett ; 35(3): 359-65, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23160740

RESUMEN

The gene encoding a novel short-chain alcohol dehydrogenase in the thermophilic bacterium, Carboxydothermus hydrogenoformans, was identified and overexpressed in Escherichia coli. The enzyme was thermally stable and displayed the highest activity at 70 °C and pH 6.0. It preferred NAD(H) over NADP(H) as a cofactor and exhibited broad substrate specificity towards aliphatic ketones, cycloalkanones, aromatic ketones, and ketoesters. Furthermore, ethyl benzoylformate was asymmetrically reduced by the purified enzyme, using an additional coupled NADH regeneration system, with 95 % conversion and in an enantiomeric excess of (99.9 %). The results of this study may lead to the discovery of a novel method for asymmetric reduction of alcohols, which is an important tool in organic synthesis.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/metabolismo , Alcohol Deshidrogenasa/genética , Clonación Molecular , Coenzimas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Bacterias Grampositivas/genética , Concentración de Iones de Hidrógeno , NAD/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
12.
Extremophiles ; 16(1): 57-66, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22015539

RESUMEN

Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Haloarcula marismortui/enzimología , Agua de Mar/microbiología , Microbiología del Agua , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/aislamiento & purificación , Biocatálisis , Cromatografía de Afinidad , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Espectrometría de Masas en Tándem
13.
J Ind Microbiol Biotechnol ; 39(10): 1431-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22743788

RESUMEN

A simple and reliable procedure was developed to screen biocatalysts with high alcohol dehydrogenase activity, efficient internal coenzyme regeneration, and high stereoselectivity. The strategy of activity screening in a microtitre plate format was based on the detection of fluorescence of NAD(P)H originating from the oxidation of alcohols. The primary and secondary screenings from soil samples yielded a versatile bacterial biocatalyst Rhodococcus erythropolis WZ010 demonstrating potential for the preparation of chiral aryl secondary alcohols. In terms of activity and stereoselectivity, the optimized reaction conditions in the stereoselective oxidation were 30 °C, pH 10.5, and 250 rpm, whereas bioreduction using glucose as co-substrate was the most favorable at 35 °C and pH 7.5 in the static reaction mixture. Under the optimized conditions, fresh cells of the strain stereoselectively oxidized the (S)-enantiomer of racemic 1-phenylethanol (120 mM) to acetophenone and afforded the unoxidized (R)-1-phenylethanol in 49.4 % yield and >99.9 % enantiomeric excess (e.e.). In the reduction of 10 mM acetophenone, the addition of 100 mM glucose significantly increased the conversion rate from 3.1 to 97.4 %. In the presence of 800 mM glucose, acetophenone and other aromatic ketones (80 mM) were enantioselectively reduced to corresponding (S)-alcohols with excellent e.e. values. Both stereoselective oxidation and asymmetric reduction required no external cofactor regeneration system.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Alcoholes/química , Alcoholes/metabolismo , NADP/metabolismo , Rhodococcus/enzimología , Rhodococcus/aislamiento & purificación , Biocatálisis , Fluorescencia , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Cetonas/metabolismo , NADP/análisis , Oxidación-Reducción , Rhodococcus/clasificación , Rhodococcus/metabolismo , Estereoisomerismo , Temperatura
14.
Microbiology (Reading) ; 157(Pt 1): 209-219, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20847004

RESUMEN

Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Clatrina/metabolismo , Endocitosis , Entamoeba histolytica/metabolismo , Interacciones Huésped-Patógeno , Transferrina/metabolismo , Alcohol Deshidrogenasa/aislamiento & purificación , Aldehído Oxidorreductasas/aislamiento & purificación , Vesículas Cubiertas por Clatrina/metabolismo , Humanos , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Espectrometría de Masas en Tándem
15.
Appl Microbiol Biotechnol ; 89(6): 1831-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21120472

RESUMEN

A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,ß-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subunits in SDS gel, and the gene sequence revealed that this enzyme belongs to the molybdopterin binding oxidoreductase family containing molybdopterins, FAD, and iron-sulfur clusters.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Comamonadaceae/enzimología , Hidroliasas/aislamiento & purificación , Hidroliasas/metabolismo , Alcohol Deshidrogenasa/genética , Clonación Molecular , Coenzimas/metabolismo , Comamonadaceae/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida , Flavina-Adenina Dinucleótido/metabolismo , Hidroliasas/genética , Compuestos de Hierro Carbonilo/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Metaloproteínas/metabolismo , Datos de Secuencia Molecular , Cofactores de Molibdeno , Subunidades de Proteína , Pteridinas/metabolismo , Análisis de Secuencia de ADN
16.
Cell Mol Life Sci ; 67(17): 3005-15, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20405162

RESUMEN

Alcohol dehydrogenase 3 (ADH3) has been assigned a role in nitric oxide homeostasis due to its function as an S-nitrosoglutathione reductase. As altered S-nitrosoglutathione levels are often associated with disease, compounds that modulate ADH3 activity might be of therapeutic interest. We performed a virtual screening with molecular dockings of more than 40,000 compounds into the active site of human ADH3. A novel knowledge-based scoring method was used to rank compounds, and several compounds that were not known to interact with ADH3 were tested in vitro. Two of these showed substrate activity (9-decen-1-ol and dodecyltetraglycol), where calculated binding scoring energies correlated well with the logarithm of the k (cat)/K (m) values for the substrates. Two compounds showed inhibition capacity (deoxycholic acid and doxorubicin), and with these data three different lines for specific inhibitors for ADH3 are suggested: fatty acids, glutathione analogs, and cholic acids.


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Ligandos , Modelos Moleculares , Unión Proteica , Alcohol Deshidrogenasa/aislamiento & purificación , Humanos , Cinética , Estructura Molecular
17.
Biosci Biotechnol Biochem ; 75(6): 1055-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21670533

RESUMEN

A novel (R)-specific alcohol dehydrogenase (AFPDH) produced by Candida maris IFO10003 was purified to homogeneity by ammonium sulfate fractionation, DEAE-Toyopearl, and Phenyl-Toyopearl, and characterized. The relative molecular mass of the native enzyme was found to be 59,900 by gel filtration, and that of the subunit was estimated to be 28,900 on SDS-polyacrylamide gel electrophoresis. These results suggest that the enzyme is a homodimer. It required NADH as a cofactor and reduced various kinds of carbonyl compounds, including ketones and aldehydes. AFPDH reduced acetylpyridine derivatives, ß-keto esters, and some ketone compounds with high enantioselectivity. This is the first report of an NADH-dependent, highly enantioselective (R)-specific alcohol dehydrogenase isolated from a yeast. AFPDH is a very useful enzyme for the preparation of various kinds of chiral alcohols.


Asunto(s)
Alcohol Deshidrogenasa , Aldehídos/metabolismo , Biotecnología/métodos , Candida/enzimología , Cetonas/metabolismo , NAD/metabolismo , Alcohol Deshidrogenasa/aislamiento & purificación , Alcohol Deshidrogenasa/metabolismo , Candida/química , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Peso Molecular , Estereoisomerismo , Especificidad por Sustrato , Temperatura
18.
Biodegradation ; 22(6): 1215-25, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21526390

RESUMEN

Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/metabolismo , Cupriavidus necator/enzimología , Escherichia coli/genética , Etanol/metabolismo , Furaldehído/metabolismo , Microbiología Industrial , Lignina/metabolismo , Proteínas Recombinantes/metabolismo , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biomasa , Clonación Molecular , Cupriavidus necator/genética , Escherichia coli/enzimología , Fermentación , Furanos/metabolismo , Cinética , NAD/metabolismo , Oxidación-Reducción , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Transformación Bacteriana , Zinc/metabolismo
19.
Biodegradation ; 22(6): 1227-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21526389

RESUMEN

Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 µM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 µM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Cupriavidus necator/enzimología , Escherichia coli/genética , Etanol/metabolismo , Furaldehído/metabolismo , Microbiología Industrial , Isoenzimas/metabolismo , Proteínas Recombinantes/metabolismo , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cupriavidus necator/genética , Escherichia coli/enzimología , Furanos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Cinética , Datos de Secuencia Molecular , NAD/metabolismo , Filogenia , Plásmidos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Termodinámica , Transformación Bacteriana
20.
Microbiology (Reading) ; 156(Pt 5): 1556-1564, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20150239

RESUMEN

2,3-Dihydroxypropane-1-sulfonate (DHPS) is a widespread intermediate in plant and algal transformations of sulfoquinovose (SQ) from the plant sulfolipid sulfoquinovosyl diacylglycerol. Further, DHPS is recovered quantitatively during bacterial degradation of SQ by Klebsiella sp. strain ABR11. DHPS is also a putative precursor of sulfolactate in e.g. Ruegeria pomeroyi DSS-3. A bioinformatic approach indicated that some 28 organisms with sequenced genomes might degrade DHPS inducibly via sulfolactate, with three different desulfonative enzymes involved in its degradation in different organisms. The hypothesis for Cupriavidus pinatubonensis JMP134 (formerly Ralstonia eutropha) involved a seven-gene cluster (Reut_C6093-C6087) comprising a LacI-type transcriptional regulator, HpsR, a major facilitator superfamily uptake system, HpsU, three NAD(P)(+)-coupled DHPS dehydrogenases, HpsNOP, and (R)-sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. HpsOP effected a DHPS-racemase activity, and HpsN oxidized (R)-DHPS to (R)-sulfolactate. The hypothesis for Roseovarius nubinhibens ISM was similar, but involved a tripartite ATP-independent transport system for DHPS, HpsKLM, and two different desulfonative enzymes, (S)-cysteate sulfo-lyase [EC 4.4.1.25] and sulfoacetaldehyde acetyltransferase (Xsc) [EC 2.3.3.15]. Representative organisms were found to grow with DHPS and release sulfate. C. pinatubonensis JMP134 was found to express at least one NAD(P)(+)-coupled DHPS dehydrogenase inducibly, and three different peaks of activity were separated by anion-exchange chromatography. Protein bands (SDS-PAGE) were subjected to peptide-mass fingerprinting, which identified the corresponding genes (hpsNOP). Purified HpsN converted DHPS to sulfolactate. Reverse-transcription PCR confirmed that hpsNOUP were transcribed inducibly in strain JMP134, and that hpsKLM and hpsNOP were transcribed in strain ISM. DHPS degradation is widespread and diverse, implying that DHPS is common in marine and terrestrial environments.


Asunto(s)
Alcohol Deshidrogenasa/aislamiento & purificación , Alcanosulfonatos/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Cupriavidus necator/metabolismo , Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Electroforesis en Gel de Poliacrilamida , Metabolismo Energético , Genoma Bacteriano , Familia de Multigenes , Rhodobacteraceae/enzimología , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA