Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.390
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(11): e2116254119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254895

RESUMEN

SignificanceTranscription-coupled repair (TCR) involves four core proteins: CSA, CSB, USP7, and UVSSA. CSA and CSB are mutated in the severe human neurocutaneous disease Cockayne syndrome. In contrast UVSSA is a mild photosensitive disease in which a mutated protein sequence prevents recruitment of USP7 protease to deubiquitinate and stabilize CSB. We deleted the UVSSA protein using CRISPR-Cas9 in an aneuploid cell line, HEK293, and determined the functional consequences. The knockout cell line was sensitive to transcription-blocking lesions but not sensitive to oxidative agents or PARP inhibitors, unlike CSB. Knockout of UVSSA also activated ATM, like CSB, in transcription-arrested cells. The phenotype of UVSSA, especially its rarity, suggests that many TCR-deficient patients and tumors fail to be recognized clinically.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN , Homeostasis , Transducción de Señal , Transcripción Genética , Alquilantes/farmacología , Secuencia de Aminoácidos , Proteínas Portadoras/química , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Células HEK293 , Humanos , Mutágenos/farmacología , Transducción de Señal/efectos de los fármacos , Rayos Ultravioleta
2.
Pediatr Blood Cancer ; 71(3): e30829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38149843

RESUMEN

BACKGROUND: As the number and longevity of childhood cancer survivors increases, assessing treatment-associated late effects remains crucial. We longitudinally examined the incidence of and associated risk factors for Leydig cell dysfunction (LCD) and Leydig cell failure (LCF) in men treated for pediatric cancers at our institution. PROCEDURE: We performed a retrospective longitudinal cohort study of adult male survivors treated for various childhood cancers who are at risk for LCD. The outcomes of interest were serum testosterone and luteinizing hormone (LH) levels during childhood and adulthood. Risk factors assessed included treatment with stem cell transplant, total body irradiation (TBI), and exposure to alkylating agents. RESULTS: Out of 118 eligible subjects, 7.6% had LCF and 14.4% had LCD. Median age at last testosterone level was 20 years. Subjects with sufficient testosterone levels in adulthood (N = 105) remained sufficient for a mean of 11.1 years following completion of cancer treatment. We found significant associations between LCF and treatment with TBI (p < .003) and between LCF in adulthood and testosterone insufficiency in childhood (p < .001). No statistically significant association was found between LCF and cyclophosphamide equivalent dose greater than 20 g/m2 (p = .2). LCF/LCD occurred in a small number of nonirradiated patients treated with the highest doses of alkylators. CONCLUSIONS: Incidence of LCF and LCD are low in male survivors of childhood cancer. Longitudinally, there is an association between childhood testosterone insufficiency and LCF in adulthood. Alkylating agents and stem cell transplant without TBI were not associated with LCF in our study.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Adulto , Humanos , Masculino , Niño , Adulto Joven , Células Intersticiales del Testículo/fisiología , Neoplasias/tratamiento farmacológico , Estudios Retrospectivos , Estudios Longitudinales , Testosterona/farmacología , Testosterona/uso terapéutico , Sobrevivientes , Alquilantes/farmacología , Alquilantes/uso terapéutico
3.
Nature ; 551(7680): 389-393, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144457

RESUMEN

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Asunto(s)
Enzimas AlkB/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Complejos Multiproteicos/metabolismo , Transducción de Señal , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Alquilantes/farmacología , Alquilación , Secuencia de Aminoácidos , Aductos de ADN/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Genes Ligados a X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología , Ubiquitinación
4.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500463

RESUMEN

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Autoantígeno Ku/metabolismo , Factores de Empalme de ARN/metabolismo , Alquilantes/efectos adversos , Alquilantes/farmacología , Camptotecina/efectos adversos , Camptotecina/farmacología , Línea Celular Tumoral , Endodesoxirribonucleasas/metabolismo , Glioblastoma/tratamiento farmacológico , Recombinación Homóloga/genética , Humanos , Proteína Homóloga de MRE11/metabolismo , Interferencia de ARN , Factores de Empalme de ARN/genética , ARN Interferente Pequeño/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Temozolomida/efectos adversos , Temozolomida/farmacología
5.
Cytopathology ; 34(2): 146-153, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36458472

RESUMEN

OBJECTIVES: Patients scheduled to receive chemotherapy should be counselled on fertility preservation. Known gonadotoxic chemotherapies such as alkylating agents have a high risk of altering ovarian reserve. In some cases, the urgency of treatment requires the use of chemotherapy before fertility preservation, which will be carried out at a later stage. Usually the ovarian tissue is cryopreserved. The aim of our study is to investigate the impact of chemotherapies on follicular density and the apoptosis of reserve follicles. METHODS: We included 140 patients: 63 patients, mean age 18.8 years, were included in the group "no chemotherapy" (group A) and 77 patients, mean age 17.1 years, in the group "received chemotherapy before ovarian conservation" (group B). None of the patients had had pelvic radiotherapy prior to ovarian cryopreservation. The histological parameters studied were follicular density and the presence of malignant cells. We selected 12 patients from group A and 15 patients from group B, comparable in age and pathology, for whom we evaluated follicle apoptosis by immunostaining cleaved caspase-3. RESULTS: We demonstrated an inverse relationship between follicular density and age (p < 0.0001), as well as a lack of effect of chemotherapy on follicular density (p = 0.87). We showed the impact of various chemotherapies, especially with alkylating agents, on the apoptosis of ovarian follicles (p < 0.0001). Three patients had ovarian tissue infiltration, two of which were malignant. CONCLUSION: This work underlines the fact that conservation of ovarian tissue after chemotherapy remains possible.


Asunto(s)
Reserva Ovárica , Femenino , Humanos , Adolescente , Ovario/patología , Folículo Ovárico/patología , Apoptosis , Alquilantes/farmacología
6.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902118

RESUMEN

Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.


Asunto(s)
Nitrosaminas , Daño del ADN , Alquilación , Reparación del ADN , Alquilantes/farmacología , Aductos de ADN
7.
Pharmacol Res ; 175: 105976, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785318

RESUMEN

Seizures are relatively common in cancer patients, and co-administration of chemotherapeutic and antiepileptic drugs (AEDs) is highly probable and necessary in many cases. Nonetheless, clinically relevant interactions between chemotherapeutic drugs and AEDs are rarely summarized and pharmacologically described. These interactions can cause insufficient tumor and seizure control or lead to unforeseen toxicity. This review focused on pharmacokinetic and pharmacodynamic interactions between alkylating agents and AEDs, helping readers to make a rational choice of treatment optimization, and thus improving patients' quality of life. As an example, phenobarbital, phenytoin, and carbamazepine, by increasing the hepatic metabolism of cyclophosphamide, ifosfamide and busulfan, yield smaller peak concentrations and a reduced area under the plasma concentration-time curve (AUC) of the prodrugs; alongside, the maximum concentration and AUC of their active products were increased with the possible onset of severe adverse drug reactions. On the other side, valproic acid, acting as histone deacetylase inhibitor, showed synergistic effects with temozolomide when tested in glioblastoma. The present review is aimed at providing evidence that may offer useful suggestions for rational pharmacological strategies in patients with seizures symptoms undertaking alkylating agents. Firstly, clinicians should avoid the use of enzyme-inducing AEDs in combination with alkylating agents and prefer the use of AEDs, such as levetiracetam, that have a low or no impact on hepatic metabolism. Secondly, a careful therapeutic drug monitoring of both alkylating agents and AEDs (and their active metabolites) is necessary to maintain therapeutic ranges and to avoid serious adverse reactions.


Asunto(s)
Alquilantes/farmacología , Anticonvulsivantes/farmacología , Alquilantes/farmacocinética , Animales , Anticonvulsivantes/farmacocinética , Interacciones Farmacológicas , Humanos
8.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234921

RESUMEN

DNA-alkylating natural products play an important role in drug development due to their significant antitumor activities. They usually show high affinity with DNA through different mechanisms with the aid of their unique scaffold and highly active functional groups. Therefore, the biosynthesis of these natural products has been extensively studied, especially the construction of their pharmacophores. Meanwhile, their producing strains have evolved corresponding self-resistance strategies to protect themselves. To further promote the functional characterization of their biosynthetic pathways and lay the foundation for the discovery and rational design of DNA alkylating agents, we summarize herein the progress of research into DNA-alkylating antitumor natural products, including their biosynthesis, modes of action, and auto-resistance mechanisms.


Asunto(s)
Productos Biológicos , Alquilantes/farmacología , Productos Biológicos/farmacología , Vías Biosintéticas , ADN
9.
Mol Genet Genomics ; 296(1): 103-112, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33025164

RESUMEN

Reduced fertility is a common clinical feature of the individuals with Fanconi anemia (FA), a rare autosomal recessive disorder due to deficiency in FA pathway during DNA repair. Our previous study reported that the heterozygous pathogenic variants in FANCA (Fanconi anemia complementation group A) induced premature ovarian insufficiency (POI). However, the genotype-phenotype correlation in POI caused by FANCA variants remains considerably uncertain. Herein, a heterozygous non-frameshift Fanca-mutated mouse strain (Fanca+/hypo) carrying a 9-bp deletion (c.3581del9, p.QEA1194-1196del) was generated. The mutant mice exhibited slightly decreased Fanca protein level in ovaries, suggesting the non-frameshift deletion mutant is hypomorphic. Female fertility test showed decreased number of litters, litter sizes and prolonged litter interval time in the female Fanca+/hypo mice compared to wild-type mice. Follicle counting revealed a consistent decreasing pattern of follicle numbers in Fanca+/hypo females compared to that in wild-type mice with aging. Furthermore, embryonic fibroblasts of Fanca+/hypo mice were hyper-responsive to Mitomycin C in vitro, demonstrating a partial loss of function of this hypomorphic Fanca mutant in DNA repair. Collectively, our experimental observations suggest that the hypomorphic Fanca allele is sufficient to reduce female fertility in mice, providing new insights into the genetic counseling of FANCA variants in subfertile women.


Asunto(s)
Secuencia de Bases , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Infertilidad Femenina/genética , Infertilidad/genética , Insuficiencia Ovárica Primaria/genética , Eliminación de Secuencia , Alquilantes/farmacología , Animales , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión de Mamíferos , Proteína del Grupo de Complementación A de la Anemia de Fanconi/deficiencia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Heterocigoto , Humanos , Infertilidad/metabolismo , Infertilidad/patología , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Tamaño de la Camada , Ratones , Ratones Noqueados , Mitomicina/farmacología , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , Cultivo Primario de Células , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/patología
10.
Nucleic Acids Res ; 47(13): 6578-6589, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31188442

RESUMEN

Higher-ordered structure motifs of nucleic acids, such as the G-quadruplex (G-4), mismatched and bulge structures, are significant research targets because these structures are involved in genetic control and diseases. Selective alkylation of these higher-order structures is challenging due to the chemical instability of the alkylating agent and side-reactions with the single- or double-strand DNA and RNA. We now report the reactive OFF-ON type alkylating agents, vinyl-quinazolinone (VQ) precursors with a sulfoxide, thiophenyl or thiomethyl group for the OFF-ON control of the vinyl reactivity. The stable VQ precursors conjugated with aminoacridine, which bind to the G-4 DNA, selectively reacted with a T base on the G-4 DNA in contrast to the single- and double-strand DNA. Additionally, the VQ precursor reacted with the T or U base in the AP-site, G-4 RNA and T-T mismatch structures. These VQ precursors would be a new candidate for the T or U specific alkylation in the higher-ordered structures of nucleic acids.


Asunto(s)
Alquilantes/farmacología , ADN/efectos de los fármacos , Conformación de Ácido Nucleico/efectos de los fármacos , Alquilantes/síntesis química , Alquilantes/química , Alquilación , Emparejamiento Base , ADN/química , ADN de Cadena Simple/química , ADN de Cadena Simple/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Purinas/química , Purinas/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Triazinas/química , Triazinas/farmacología , Compuestos de Vinilo/química , Compuestos de Vinilo/farmacología
11.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1237-1246, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34312671

RESUMEN

SUMOylation of proteins regulates cell behaviors and is reversibly removed by small ubiquitin-like modifier (SUMO)-specific proteases (SENPs). The SENP family member SENP3 is involved in SUMO2/3 deconjugation and has been reported to sense cell stress and accumulate in several human cancer cells and macrophages. We previously reported that Senp3-knockout heterozygous mice showed smaller liver, but the pertinent mechanisms of SENP3 and SUMOylated substrates remain unclear. Thus, in this study, we investigated the interacting proteins with SENP3 and the alteration in hepatocytes treated with the xenobiotic diethylnitrosamine (DEN), which is specifically transformed in the liver and induces DNA double-strand breaks. Our data revealed that a certain amount of SENP3 was present in normal, untreated hepatocytes; however, DEN treatment promoted rapid SENP3 accumulation. SENP3 was mainly localized in the nuclei, and its level was significantly increased in the cytoplasm after 2 h of DEN treatment. The application of the recent proximity-dependent biotinylation (BioID) method led to the identification of 310 SENP3-interacting proteins that were involved in not only gene transcription but also RNA splicing, protein folding, and metabolism. Furthermore, after DEN exposure for a short duration, ribosomal proteins as well as proteins associated with mitochondrial ATP synthesis, membrane transport, and bile acid synthesis, rather than DNA repair proteins, were identified. This study provides insights into the diverse regulatory roles of SENP3, and the BioID method seems to be efficient for identifying physiologically relevant insoluble proteins.


Asunto(s)
Alquilantes/farmacología , Bioensayo/métodos , Biotinilación/métodos , Cisteína Endopeptidasas/metabolismo , Dietilnitrosamina/farmacología , Hepatocitos/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Unión Proteica , Mapas de Interacción de Proteínas/efectos de los fármacos , Sumoilación
12.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498964

RESUMEN

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Asunto(s)
Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Queratinocitos/efectos de los fármacos , Gas Mostaza/toxicidad , Mutación , Radiación Ionizante , Alquilantes/farmacología , Alquilantes/toxicidad , Línea Celular , Aberraciones Cromosómicas/efectos de la radiación , Hibridación Genómica Comparativa , ADN/efectos de los fármacos , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN , Roturas del ADN de Doble Cadena , Humanos , Gas Mostaza/farmacología , Estrés Oxidativo
13.
Exp Eye Res ; 200: 108218, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32905844

RESUMEN

This review details the current understanding of the mechanism of action and corneal effects of mitomycin C (MMC) for prophylactic prevention of stromal fibrosis after photorefractive keratectomy (PRK), and includes discussion of available information on dosage and exposure time recommended for MMC during PRK. MMC is an alkylating agent, with DNA-crosslinking activity, that inhibits DNA replication and cellular proliferation. It acts as a pro-drug and requires reduction in the tissue to be converted to an active agent capable of DNA alkylation. Although MMC augments the early keratocyte apoptosis wave in the anterior corneal stroma, its most important effect responsible for inhibition of fibrosis in surface ablation procedures such as PRK is via the inhibition of mitosis of myofibroblast precursor cells during the first few weeks after PRK. MMC use is especially useful when treating eyes with higher levels of myopia (≥approximately 6 D), which have shown higher risk of developing fibrosis (also clinically termed late haze). Studies have supported the use of MMC at a concentration of 0.02%, rather than lower doses (such as 0.01% or 0.002%), for optimal reduction of fibrosis after PRK. Exposure times for 0.02% MMC longer than 40 s may be beneficial for moderate to high myopia (≥6D), but shorter exposures times appear to be equally effective for lower levels of myopia. Although MMC treatment may also be beneficial in preventing fibrosis after PRK treatments for hyperopia and astigmatism, more studies are needed. Thus, despite the clinical use of MMC after PRK for nearly twenty years-with limited evidence of harmful effects in the cornea-many decades of experience will be needed to exclude late long-term effects that could be noted after MMC treatment.


Asunto(s)
Opacidad de la Córnea/prevención & control , Sustancia Propia/patología , Mitomicina/farmacología , Miopía/cirugía , Queratectomía Fotorrefractiva/efectos adversos , Complicaciones Posoperatorias/prevención & control , Agudeza Visual , Alquilantes/farmacología , Opacidad de la Córnea/etiología , Opacidad de la Córnea/patología , Sustancia Propia/efectos de los fármacos , Fibrosis/etiología , Fibrosis/patología , Fibrosis/prevención & control , Humanos , Láseres de Excímeros/uso terapéutico , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/patología
14.
Chem Res Toxicol ; 33(2): 625-633, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31841318

RESUMEN

DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.


Asunto(s)
Alquilantes/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Metilnitrosourea/farmacología , Mutagénesis/efectos de los fármacos , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Alquilantes/química , Animales , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Inhibidores Enzimáticos/química , Fibroblastos/metabolismo , Metilnitrosourea/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Supresoras de Tumor/metabolismo
15.
Exp Mol Pathol ; 114: 104410, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32113906

RESUMEN

Nitrogen mustard (NM) is a highly reactive bifunctional alkylating agent that induces inflammation, edema and blistering in skin. An important mechanism mediating the action of NM and related mustards is oxidative stress. In these studies a modified murine patch-test model was used to analyze DNA damage and the antioxidant/stress response following NM exposure in isolated epidermis. NM (20 µmol) was applied to glass microfiber filters affixed to a shaved dorsal region of skin of CD-1 mice. NM caused structural damage to the stratum corneum as reflected by increases in transepidermal water loss and skin hydration. This was coordinate with edema, mast cell degranulation and epidermal hyperplasia. Within 3 h of NM exposure, a 4-fold increase in phosphorylated histone H2AX, a marker of DNA double-stranded breaks, and a 25-fold increase in phosphorylated p53, a DNA damage marker, were observed in the epidermis. This was associated with a 40% increase in 8-oxo-2'-deoxyguanosine modified DNA in the epidermis and a 4-fold increase in 4-hydroxynonenal modified epidermal proteins. At 12 h post NM, there was a 3-75 fold increase in epidermal expression of antioxidant/stress proteins including heme oxygenase-1, thioredoxin reductase, superoxide dismutase, glutathione reductase, heat shock protein 27 and cyclooxygenase 2. These data indicate that NM induces early oxidative epidermal injury in mouse skin leading to an antioxidant/stress response. Agents that enhance this response may be useful in mitigating mustard-induced skin injury.


Asunto(s)
Antioxidantes/metabolismo , Epidermis/metabolismo , Mecloretamina/farmacología , Estrés Fisiológico/genética , Alquilantes/farmacología , Alquilantes/toxicidad , Animales , Apoptosis/efectos de los fármacos , Ciclooxigenasa 2/genética , Daño del ADN/efectos de los fármacos , Epidermis/efectos de los fármacos , Glutatión Reductasa/genética , Proteínas de Choque Térmico HSP27/genética , Hemo-Oxigenasa 1/genética , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Mecloretamina/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Superóxido Dismutasa/genética , Reductasa de Tiorredoxina-Disulfuro/genética
16.
Bioorg Med Chem ; 28(11): 115507, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327352

RESUMEN

The DNA repair enzyme AAG has been shown in mice to promote tissue necrosis in response to ischaemic reperfusion or treatment with alkylating agents. A chemical probe inhibitor is required for investigations of the biological mechanism causing this phenomenon and as a lead for drugs that are potentially protective against tissue damage from organ failure and transplantation, and alkylative chemotherapy. Herein, we describe the rationale behind the choice of arylmethylpyrrolidines as appropriate aza-nucleoside mimics for an inhibitor followed by their synthesis and the first use of a microplate-based assay for quantification of their inhibition of AAG. We finally report the discovery of an imidazol-4-ylmethylpyrrolidine as a fragment-sized, weak inhibitor of AAG.


Asunto(s)
Alquilantes/farmacología , Compuestos Aza/farmacología , ADN Glicosilasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nucleósidos/farmacología , Alquilantes/síntesis química , Alquilantes/química , Animales , Compuestos Aza/síntesis química , Compuestos Aza/química , Cristalografía por Rayos X , ADN Glicosilasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Modelos Moleculares , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Relación Estructura-Actividad
17.
Nucleic Acids Res ; 46(10): 5061-5074, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635344

RESUMEN

The Set2 methyltransferase and its target, histone H3 lysine 36 (H3K36), affect chromatin architecture during the transcription and repair of DNA double-stranded breaks. Set2 also confers resistance against the alkylating agent, methyl methanesulfonate (MMS), through an unknown mechanism. Here, we show that Schizosaccharomyces pombe (S. pombe) exhibit MMS hypersensitivity when expressing a set2 mutant lacking the catalytic histone methyltransferase domain or a H3K36R mutant (reminiscent of a set2-null mutant). Set2 acts synergistically with base excision repair factors but epistatically with nucleotide excision repair (NER) factors, and determines the timely nuclear accumulation of the NER initiator, Rhp23, in response to MMS. Set2 facilitates Rhp23 recruitment to chromatin at the brc1 locus, presumably to repair alkylating damage and regulate the expression of brc1+ in response to MMS. Set2 also show epistasis with DNA damage checkpoint proteins; regulates the activation of Chk1, a DNA damage response effector kinase; and acts in a similar functional group as proteins involved in homologous recombination. Consistently, Set2 and H3K36 ensure the dynamicity of Rhp54 in DNA repair foci formation after MMS treatment. Overall, our results indicate a novel role for Set2/H3K36me in coordinating the recruitment of DNA repair machineries to timely manage alkylating damage.


Asunto(s)
Alquilantes/farmacología , Reparación del ADN/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Metilmetanosulfonato/farmacología , Metilación/efectos de los fármacos , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/genética
18.
Proc Natl Acad Sci U S A ; 114(11): E2205-E2214, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246327

RESUMEN

DNA lesion bypass is mediated by DNA damage tolerance (DDT) pathways and homologous recombination (HR). The DDT pathways, which involve translesion synthesis and template switching (TS), are activated by the ubiquitylation (ub) of PCNA through components of the RAD6-RAD18 pathway, whereas the HR pathway is independent of RAD18 However, it is unclear how these processes are coordinated within the context of chromatin. Here we show that Bre1, an ubiquitin ligase specific for histone H2B, is recruited to chromatin in a manner coupled to replication of damaged DNA. In the absence of Bre1 or H2Bub, cells exhibit accumulation of unrepaired DNA lesions. Consequently, the damaged forks become unstable and resistant to repair. We provide physical, genetic, and cytological evidence that H2Bub contributes toward both Rad18-dependent TS and replication fork repair by HR. Using an inducible system of DNA damage bypass, we further show that H2Bub is required for the regulation of DDT after genome duplication. We propose that Bre1-H2Bub facilitates fork recovery and gap-filling repair by controlling chromatin dynamics in response to replicative DNA damage.


Asunto(s)
Daño del ADN , Replicación del ADN , Histonas/metabolismo , Alquilantes/farmacología , Cromatina/genética , Cromatina/metabolismo , Daño del ADN/efectos de los fármacos , Reparación del ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Origen de Réplica , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751237

RESUMEN

Several alkylating agents that either occur in the environment or are self-produced can cause DNA-damaging injuries in bacterial cells. Therefore, all microorganisms have developed repair systems that are able to counteract DNA alkylation damage. The adaptive response to alkylation stress in Escherichia coli consists of the Ada operon, which has been widely described; however, the homologous system in Mycobacterium tuberculosis (MTB) has been shown to have a different genetic organization but it is still largely unknown. In order to describe the defense system of MTB, we first investigated the proteins involved in the repair mechanism in the homologous non-pathogenic mycobacterium M. smegmatis. Ogt, Ada-AlkA and FadE8 proteins were recombinantly produced, purified and characterized. The biological role of Ogt was examined using proteomic experiments to identify its protein partners in vivo under stress conditions. Our results suggested the formation of a functional complex between Ogt and Ada-AlkA, which was confirmed both in silico by docking calculations and by gel filtration chromatography. We propose that this stable association allows the complex to fulfill the biological roles exerted by Ada in the homologous E. coli system. Finally, FadE8 was demonstrated to be structurally and functionally related to its E. coli homologous, AidB.


Asunto(s)
Acil-CoA Deshidrogenasa/química , Proteínas Bacterianas/química , Reparación del ADN , ADN Bacteriano/genética , Metiltransferasas/química , Mycobacterium smegmatis/genética , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Alquilantes/farmacología , Alquilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cromosomas Bacterianos/química , Clonación Molecular , Daño del ADN , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Molecules ; 25(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486470

RESUMEN

Bioactive C17 and C18 acetylenic oxylipins have shown to contribute to the cytotoxic, anti-inflammatory, and potential anticancer properties of terrestrial plants. These acetylenic oxylipins are widely distributed in plants belonging to the families Apiaceae, Araliaceae, and Asteraceae, and have shown to induce cell cycle arrest and/or apoptosis of cancer cells in vitro and to exert a chemopreventive effect on cancer development in vivo. The triple bond functionality of these oxylipins transform them into highly alkylating compounds being reactive to proteins and other biomolecules. This enables them to induce the formation of anti-inflammatory and cytoprotective phase 2 enzymes via activation of the Keap1-Nrf2 signaling pathway, inhibition of proinflammatory peptides and proteins, and/or induction of endoplasmic reticulum stress, which, to some extent, may explain their chemopreventive effects. In addition, these acetylenic oxylipins have shown to act as ligands for the nuclear receptor PPARγ, which play a central role in growth, differentiation, and apoptosis of cancer cells. Bioactive C17 and C18 acetylenic oxylipins appeartherefore, to constitute a group of promising lead compounds for the development of anticancer drugs. In this review, the cytotoxic, anti-inflammatory and anticancer effects of C17 and C18 acetylenic oxylipins from terrestrial plants are presented and their possible mechanisms of action and structural requirements for optimal cytotoxicity are discussed.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Oxilipinas/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Alquilantes/farmacología , Alquinos/química , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Apoptosis , Células CACO-2 , Diferenciación Celular , Línea Celular Tumoral , Dieta , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Ligandos , Ratones , Panax/química , Células RAW 264.7 , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA